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1 Collision Dynamics of Stretched Atoms

The abstract of the original proposal awarded 6/99 is: “The theoretical study of collisions
with stretched (excited and Rydberg) atoms is proposed. Classical and semiclassical expres-
sions for the inelastic form factor will be developed in such a way that they will form the
basis of new theories for the cross sections of (nf — n'¢’) collision processes involving excited
atoms. Stark ¢-mixing (nf — nf') wiil also be investigated by classical techniques. Collisions
involving planetary atoms will be studied by adiabatic invagiance methods.”

This report will furnish the huge successes and acheivements accomplished under AFOSR
funding.

2 Importance
Collision Dynamics of Stretched atoms is of key importance in several classes of problems,
such as the following

(A) Three-Body Recombination of positron et with antiprotons p,
et+p+et — H+et (1)
to form antihydrogen H at positron (cryogenic) temperatures 4K.
(B) Electron - ion recombination process

e+ Xet+e— Xe+e (2)

at electron temperatures of T. ~ 5 mK. The theory to be developed for the above
processes is important in that it rast be derived from “firs¢ principles” and will therefore
provide a fundamental understanding of two quite differ=a¢ examples of recombination at
ultracold energies.

The theory and computational techniques under development for (A) and (B) are also
important for understanding current experiments at NIST on recombination and for trapping
experiments to be performed at CERN in the near future.

2.1 Antihydrogen Formation

At the Low Energy Antiproton Ring (LEAR) at CERN, antiprotons have been captured in
specially designed Penning traps, cooled to meV energies and stored for hours in a small
volume of space. Positrons have also been similarly accumulated.

The current problem is how to arrange them to recombine efficiently into A and then
controlling A in such a way that permits spectroscopic mesurements. Trapped atom tech-
nology can then be applied to H. Since the sharp (2s — 1s) double photon transition in H
can be measured to an accuracy of 1 in 10'%, then, by comparing the measured values of the
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Rydberg and anti-Rydberg wavenumbers, H becomes a fundamental physical system ideal
for new tests of fundamental symmetries under combined operations of C (charge conjuga-
tion) P (parity) and T (time reversal). CPT invariance is minimal condition for the existence
of antiparticles within quantum field theory. Moreover, by comparing the gravitational red
shift of the (2s — 1s) transition for H and H, the first test of the gravitational Weak Equiv-
alence Principle (WEP) for antimatter would then be possible. New basic theory on (1) at
ultracold temperatures is required. ,

2.2 Electron-Ion Recombination

The theory under development for anti-hydrogen recombination (1) will also be applicable
to the electron~ ion recombination process

e+ Xet+e— Xe+e (3)

and
e+ Rb*+e— Rb+e . (4)

at electron temperatures of T, ~ 5 mK. Accurate experiments on these systems are currently
under investigation by S. Rolston at NIST and by P. Gould at University of Connecticut. The
eventual comparison with our theory under development is of key significance and importance
since it will be the first accurate comparison of ultracold recombination. As has been shown
in our current investigation [1], the mechanisms of recombination at ultracold energies are
quite different from those for recombination at room and higher temperatures.

2.3 Basic Collision Problems

Within the general theory of the three-body recombination processes above, there are sev-
eral key collision mechanisms, operating at ultralow energies, which are .addressed in this
proposal. On changing antimatter signs to matter signs, these are: o

1. Theory of Stark Mixing collisions
At + H(nl) — AT + H(nt') (5)
2. Theory of nf — n’¢ ultracold collisional transitions
P+ H(nt) - P+ H(n't') (6)

where projectile P can be electrons or ions. These are important to (1), (3) and (4).




3 Present Results from AFOSR support

3.1 Ultralow energy Three-body electron-ion recombination

Three-body electron-ion recombination is described (1] at ultralow electron temperatures 7.
At 4K, the initial stage involves extremely rapid collisional capture into high Rydberg states
n > 100 — 100 with high angular momentum [ =~ n — 1 at a rate ~ T,*%. This is followed
by extremely slow collisional-radiative decay. The key collisional mechanism appears to be
collisional {-mixing of the Rydberg atoms A(n) by ions and electrons until sufficiently low !’s
are attained so as to permit relatively rapid radiative decay to the lowest electronic levels.
This sequence is in direct contrast to the sequence of much slower collisional capture at
higher T, followed by the much faster decay of A(n) by electron collisions to lower levels
where radiative decay completes the recombination. At ultra-low temperatures, the rate
limiting sequence is therefore collisional {-mixing followed by radiative decay in contrast to
recombination at much higher energies and electron densities N, ~ 102 cm~3, where the rate
limiting step is the initial collisional or radiative capture at intermediate T.(~ 1 eV) and

higher T, (~ 10 eV), respectively.

3.2 Sub-Projects

We therefore had to investigate (a) dynamical properties of Rydberg atoms, (b) Stark Mixing
nl — nl’ collisional transitions and (c) nl — n'l’ collisional transitions in Rydberg atoms
in levels n ~ 100 — 400, for which fully quantal calculations were prohibitively difficult.
Highlights of these investigations are:

1. We defined, formulated and developed the concept of a classical inelastic form factor.

2. By appeal to the dynamical SO(4) symmetry of H(m, ¢), we were able to provide the
first exact classical and quantal solutions for the Stark Mixing problem for the whole
array of nl — n'l' transitions in Rydberg atoms.  T'iis has been a long outs: anding
problem in Atomic Physics for the past 40 years. o

3. By exploiting the classical form factor, we were able to formulate the first classical
impulse theory for nl — n'l’ collisional transitions in Rydberg atoms.

All of this work resulted in the following seven publications in Peer Reviewed Scientific
Journals




List of Publications

Classical Atomic Form Factor. by D. Vrinceanu and M. R. Flannery, Physical Review
Letters, 82, (1999), pp. 3412-3413.

Classical and Quantal Atomic Form Factors for arbitrary transitions, by D. Vrinceanu
and M. R. Flannery, Phys. Rev. A 60, (1999), pp. 1053-1069.

- Quantal-Classical Correspondence Impulse Theory, by M. R. Flannery and D. Vrinceanu

Physical Review Letters, 85, (2000), pp. 1-5.

Quantal Stark Mizing at ultralow energtes, by D. Vrinceanu and M. R. Flannery, J.
Phys. B: At. Mol. Opt. Phys. 33 (2000), pp. L721-8.

Classical Stark Mizing at ultralow energies, by D. Vrinceanu and M. R. Flannery,
Physical Review Letters, 85, (2000), pp. 4880-3.

Analytical quantal collisional Stark Mizing Probabilities, by D. Vrinceanu and M. R.
Flannery, J. Phys. B: At. Mol. Opt. Phys. 34 (2001), pp. L1-L8.

Classical and Quantal Collisional Stark Mizing at ultralow collision energies, by D.
Vrinceanu and M. R. Flannery, Phy. Rev. A 63 (2001) 032701-(1-22).

Referee Reports

The referee’s report on paper #1, Classical Atomic Form Factor, Phys. Rev. Letts,
82, (1999), 3412 reads:

. This is a very nice example of how classical mechanics can be used to understand
the behavior of quantum mechanical observables, even for comparatively small quan- -
tum numbers. The present work is new and simple. It is important because it makes
a significant contribution to advancing our understanding of the relation between clas-
sical and quantum mechanics. This is a subject of substantial and growing interest in
almost all fields of modern physics, so there is no doubt that the criterion of "broad
interest” is fufilled. The manuscript is concisely and well written; it should be easily
understandable by a broad audience.l do not hesitate to recommend publication in
Physical Review Letters.”

The referee’s report on Paper #2, Classical and Quantal Atomic Form Factors for
arbitrary transitions, Phys. Rev. A 60, (1999), 1053 reads:

“This is a remarkable paper with a great deal of physical insight combined with sys-
tematic analyses of the numerical results. The unified classical/quantal treatment is
both interesting and useful. I recommend publication in the Physical Review A




3. In the referee report on paper #3 Quantal-Classical Correspondence Impulse Theory
Phys. Rev. Letts, 85, (2000).1. the referee wrote:

% In this paper a new way of formulating the quantal impulse approximation is pre-
sented which allows one to obtain its classical limit in a natural and rather simple way.
The presented approach which involves the Wigner functions of initial and final states
exhibits in a lucid way the quantitative relationship between this quantum impulse
approximation and the binary encounter approach. So far this connectinn nas been
rather obscure. As far as inelastic collisions are concerned, the presented results have
a great potential in inspiring new semiclassical approaches.

In my dpinion,the main result of this paper is of topical significance in two respects.
Firstly, the quantal impulse approximation is of central importance in general scatter-
ing theory. Secondly, recently there has been a general strong interest in the power of
classical dynamics and in its connection with quantum dynamics (Compare with Refs.
10-15). As a minor remark, in this context it might be worth not only to refer to time-
independent problems but also to some semiclassical work dealing with explicitly time
dependent problems (e.g. G. Alber and O. Zobay, PRA 59, R3174 (1999)). Futher-
more, the presentation of the material is clear and scientifically sound. I recommend

publication.”

4. In a referee report on paper #4, “Quantal Stark Mixing at ultralow energies”, J. Phys.
B: Atom. Mol. Opt. Phys. 33 (2000) L721, the referee wrote: -

“The article presents an elegant derivation, based on group theoretical arguments, of
- angular mixing transition probabilities between ¢ and ¢ states in hydrogen induced by
low energy collisions with charged particles...”

5. In a referee report on paper #5 “Classical Stark mixing at ultralow coilision.energies”,
Phys. Rev. Letts, 85, (2000), 4880, the referee wrote:

“The paper presents an elegant solution to a long-standing problem in atomic physics,
but the method of approach is of interest to a much wider community because the
authors show how to exploit the classical/quantum correspondence in a system with a
rich dynamical symmetry. It is rare to find so comprehensive a solution to a difficult

problem....”

6. In a referee report on paper #6, Analytical quantal collisional Stark Mizing Probabili-
ties, J. Phys. B: At. Mol. Opt. Phys. 34 (2001), L1, the referee writes:

“The authors present interesting analytical and numerical results on collision-induced
Stark mixing probabilities for hydrogen and, more generally, for Rydberg atoms. These
results are more compact and easier to use than the authors’ corresponding findings in
previous publications..” '




7. In two referee reports on our paper #7, “Classical and Quantal Collisional Stark Mixing
at low energies”, to be published in Phys. Rev. A 63 (2001) 032701-(1-22), the referees

wrote:

(A) " The paper under consideration makes an important advancement in the theory of
collisional l-mixing. These new results are given by Egs. (28) and further by Eq. (34).
The authors succeeded in presenting the formulae in rather compact form reflecting
mathematical beauty of the problem, in addition to its pragmatic value. This material
and analysis of the results certainly deserve publication.”

(B) It is quite clear that this manuscript meets the requirements for publication in
Physical Review A. The authors have presented a uniform approach to the problem of
collisional Stark mixing in slow collisions between Rydberg-atoms and charged parti-
cles, and have obtained analytic solutions, both classical and quantal, for the full array
of intrashell nl-nl’ transitions. Previous work on this problem was restricted to initial
s-states; the present work achieves a significant generalization for arbitrary initial val-
ues of the angular momentum. This manuscript could well have formed the basis of
three separate papers, one on the classical solution, one on the quantum mechanical
treatment and a third on the Monte Carlo simulations: However, by using the SO(4)
isomorphism to exploit the rich symmetry of the problem, the authors have achieved
a uniform approach that points out important insights and connections between the
classical and quantum results.

The present uniform approach evidently allows an elegant and complete solution to
the problem that had not been previously achieved.

5 Classical and Quantal Form Factors

‘The first breakthrough came from our definition of a “classical” form factor, in classical
‘e respondence to the quantal form factor '

Fri = (Uyle v ME;)

The physical significance of the form factor is that Pis(q) = | F|? is the probability (2] of an
internal transition arising from any external impulsive perturbation (whether due to collision
with particles or exposure to electromagnetic radiation) which induces a sudden change q
to the internal momentum of the target system. This work resulted in two published papers
(1] and [2] above.

5.1 Publications: Classical and Quantal Form Factors

1. Classical Atomic Form Factor, by
D. Vrinceanu and M. R. Flannery, Phys. Rev. Letts, 82 (1999) pp. 3412-3415.

Here, the general trends exhibited in the variation of the inelastic form factor in collisional
transitions nl — n'l’, when [’ is changed and n, ! and n’ are kept fixed were explained solely in
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terms of classical mechanics. Previous quantal results were reproduced from purely classical
mechanics principles. Our conclusions are valid not only for large quantum numbers (which
provide the usual classical correspondence) but also for other cases, which, up to now have
only been described by quantal or semiclassical methods. The interesting trends exhibited in
the form factor are directly reflected in experimental and theoretical treatments of collisions
involving excited atoms.

2. Classical and Quantal Atomic Form Factors for arbitrary transitions. by
D. Vrinceatu and M. R. Flannery, Phys. Rev. A, 60 (1999) pp. 1053-1069.

Here, the classical form factor was deduced from exact correspondence with a phase
space representation of the quantal form factor. Analytical expressions were provided for
nl — n'l', nl— n' and n — n’ transitions in hydrogenic systems and for n — n' in the
one dimensional harmonic oscillator. An efficient procedure for calculation of quantal form
factors as analytical functions of momentum transfer, for arbitrary quantum numbers, was
presented. The classical approach has the ability to explain quite succinctly interesting
trends and various important aspects which remain hidden within the quantal treatment
of form factors. The classical/quantal comparison ranges from being qualitatively good for
nl — 'l transitions to close agreement for nl — n’ and n — n’ transitions. Excellent
agreement is obtained for the integrated form factor for all transitions.

6 Collisional Stark Mixing in Rydberg Atoms

In the original proposal awarded 6/99, we mentioned in the section on Theoretical Method
that “ By appeal to scattering theory, theories for Stark mixing of Rydberg atoms initially
in high ¢-states must first be developed. The mixing will occur by collisions mainly with the
heavy particles as in

p+HMmI) =5+ H(nl),
and by micrcfields in-plasma. The theory must account for large angular momenta changes
Al =1 — i’ and occurs from large { =~ n - 1."

During the past 24 months (12/15/98-12/14/2000) of the grant, research was conducted
by the PI (M. R. Flannery) and Daniel Vrinceanu, a Ph. D graduate student in the School
of Physics, working under the PI's supervision as Thesis Advisor. It was discovered [1]
that the first stage in recombination at ultralow temperatures T, is a very rapid collisional
capture into high (circular) Rydberg states nf, with high angular momentum ¢ ~ n - 1,
and large radiative lifetimes, at a rate proportional to T;4%. Stark Mixing occurs when the
electron of a Rydberg atom (in a state with principal quantum number n) changes its angular
momentum, without changing its energy, as a result of a collision, at large impact parameter
b, with a slow massive particle of charge Z,e moving with velocity v. The ¢-mixing collisions
are essential in producing the low angular momentum states required to radiatively decay
at relatively high rate to low n-levels, thereby stabilizing the recombination. This sequence
is in direct contrast to the sequence of much slower collisional capture at higher T, followed
by the much faster decay of A(n) by electron collisions to lower levels where radiative decay
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completes the recombination. The ¢-mixing was caused mainly by collisions with ions rather
than by light electrons. A full theoretical treatment of nl — nl’ transitions by collisions with
ions at ultralow energies was therefore initiated.

6.1 Collisional Stark Mixing: Research Performed

On considering the Ryaberg atom in a frame rotating with the internuclear axis, the Stark
Mixing problem can bs reduced to the problem of the Rydberg atom in mixed static fields:
electric, provided by the projectile ion and magnetic, produced by the non-inertial (Coriolis)
forces. In this way, the well known equations, in both classical [4] and quantum {3, 6]
mechanics, for.the problem of interaction between weak fields and an atom can be adopted
to provide, in principle, a solution for the Stark Mixing problem. Both quantal and classical
[7] versions of this approach have succeeded only for £ = 0 to higher angular momentum ¢
transitions, appropriate to the experiments(8].

Since three-body collisional capture produces the Rydbergs in high £ states, a new theory
for the full array né — né of collisional transitions in H(n,{) was required. The present
new treatment [9] developed during the grant period is not-an extension of any previous
theory and is capable of providing the first comprehensive classical and quantal solutions
for Stark Mixing. Our research has resulted in formulating and developing a unified theory
for the general time dependent solution of Collisional Stark Mixing. The exceptional rich
dynamic symmetry of the hydrogen atom provided the key foundation which enabled both
exact classical [9, 10] and exact quantal (9, 11] solutions to be constructed in a unified way
by using group representation theory. This classical-quantal correspondence transcends the
well known Ehrenfest’s theorem just because of the SO(4) dynamical group symmetry of
the energy shell of the hydrogen atom. New classical and quantal solutions applicable to
transitions between arbitrary angular momentum states have been derived. A new expres-
sion [10] for the classical t-ansition probability Py, is defined in a language which exploits
the dynamical symmet.y _The derived classical probability for the general array ¢ — ¢’
of transitions has a vevy simple functional form, can be easily calculated for any principal
quantum number and provides physical insight and simple geometrical explanations for the
behavior of the transition probabilities. Monte Carlo simulations (9] were also performed to
yield results in agreement with both the exact quantal and classical probabilities. Represen-
tative quantal, classical and Monte Carlo probabilities Py, are shown in Figs. [1-5]. Many
similar results are contained in Refs.[9, 10, 11]. Here, the Stark parameter « is 3Za,v,/2vb
and the classically allowed and forbidden regions correspond to positive and negative values,
respectively, of the parameter B(¢, ¢'), defined in Ref. [{9]. A step discontinuity in the clas-
sical Py, and an exponential behavior in the quantal Py, occurs as ¢ increases through this
region. Within the classical region, the quantal Pp, oscillate about the classical background.
Also, cusp-type singularities occur in the classical Py, when the parameter A(£, ) of Ref.
(9] passes through zero. By revealing essential characteristics which remain obscured within
the quantal treatment, the classical results complement the quantal results.

This work on Collisional Stark Mixing has resulted in four papers [9, 10, 11, 12).

Summaries are as follows:
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Figure 1: The Monte-Carlo simulation (step-like lines), the classical (solid line) and quantal
(dots) transition probabilities Pre(c) for a given Stark parameter a = 0.2 and initial £ = 12
within the n = 20 shell. A < 0 for all £'.
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Figure 2: The Monte-Carlo simulation (step-like lines), the classical (solid line) and quantal
(dots) transition probabilities Pre(a) for a given Stark parameter a = 0.6 and initial £ = 14
within the n = 20 shell. B > 0 for all £ '
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Figure 3: The Monte-Carlo simulation (step-like lines), the classical (solid line) and quantal
(dots) transition probabilities Ppe(c) for a given Stark parameter = 0.6 and initial £ = 18
within the n = 20 shell. Across the first dotted line B changes sign and A is negative in
both sides of this line. A changes sign across the second line while B remain positive.
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Figure 4: Stark Mixing probability for transitions within the energy shell n = 100 from the
initial state £ = 80, with angle 7 given by cosn/2 = 0.1, as a function of the final angular
momentum ¢. Exact quantal result is represented by the dots, Classical limit is represented
by the solid line and the initial state is indicated by the dotted line.
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Figure 5: Stark Mixing probability for transitions within the energy shell n = 100 from the
initial state £ = 60, with angle n given by cosn/2 = 0.9, as a function of the final angular
momentum ¢. Exact quantal result is represented by the dots, classical limit is represented
by the solid line and the initial state is indicated by the dotted line.

6.2 Publications: Collisional Stark Mixing

3. Quantal Stark mizing at ultralow collision eneryies, by
D. Vrinceanu and M. R. Flannery, J. Phys. B 33, L721 (2000).

Here, a new exact solution of the time-dependent quantal equation was obtained for the
full array of angular momentum mixing transitions nf — nf' in atomic hydrogen induced by
collisions with charged particles at ultralow energies. Based on this new solution, efficient
numerical procedures were devised. It was proven that the present (fixed frame) solution is
equivalent to the rotating frame anproach described by Krzansky and Ostrovsky (6, 7] and
that it overcomes the difficulties th.erein. Analytic expressions for low quantum numbers n
were presented. Numerical results for the transition array with n = 28 were reported.

4. Classical Stark Mizing at ultralow collision enerygies, by
D. Vrinceanu and M. R. Flannery, Phys. Rev. Letts (85, 4880 (2000))

Here, exact solutions of the time-dependent classical equations were obtained for the full
array of angular momentum mixing transitions nf — nf in atomic hydrogen induced by
collisions with charged particles at ultralow energies. A novel classical expression for the
transition probability P, was presented. The exact classical results for Pys(cx) as a function
of ¢, ¢ and the Stark parameter a agreed exceptionally well with (exact) quantal results.
They complement the quantal results by revealing essential characteristics which remain
obscured in the quantal treatment.

5. Analytical Quantal Collisional Stark Mixing probabilities by
by D. Vrinceanu and M. R. Flannery, J. Phys. B: At. Mol. Opt. Phys. 34 (2001), pp.

L1-L8. :




Exact expression for the probability P!(,’;) of Stark Mixing transitions between arbitrary

angular momentum states ¢ and ¢ within the same energy shell n, as a result of a collision
with a slow charged projectile at large impact parameters is presented. The formula obtained
is compact and easy to use for numerical evaluations even for very large quantum numbers
(n ~ 100). A classical approximation is directly obtained and compared with the exact
quantal result in the limit of large n. Two distinct sets of quantal oscillations are predicted.

6. Classical and Quantal Collisional Stark Mizing at low energies, by
D. Vrinceanu and M. R. Flannery, Phys. Rev. A 63, (2001, March issue)

Here, exact classical and quantal solutions were presented for the full array of intrashell
transitions né — nf, between any angular momentum states, induced by slow distant colli-
sions with a chiarged particles. The collisions considered are adiabatic with respect to orbital
frequency and sudden with respect to Stark precessional frequency. The rich symmetry of the
problem allows a unified approach and is the source of the excellent agreement, beyond the
usual Ehrenfest’s correspondence principle, between the classical and quantal treatments.
A classical transition probability is defined. Probabilities for transition between any an-
gular momentum states within a high Rydberg energy level are derived in exact analytic
forms and are analyzed for a large number of numerical examples. The transition probabili-
ties obtained from the three methods - quantal and classical formulations and Monte-Carlo
classical simulations - are directly compared to provide excellent agreement. The common
SO(4) symmetry provides this classical-quantal correspondence at a level, more fundamental
than Ehrenfest’s theorem and the Heisenberg correspondence. The classical method is also
complementary in that it reveals very succintly essential and valuable characteristics which
remain obscured within the quantal treatment. This reflects the essential power of classical
dynamics when applied to collision problems.

6.3 Publication: nl — n'l' Collisional Transitions

A successful formulation [13] of a classical version of the quantal iup+lse treatment was
made and applied to nl — n'l’ Collisional Transitions in Rydberg acoms. The summary is
as follows:

7. Quantal-Classical Correspondence Impulse Theory, by
M. R. Flannery and D. Vrinceanu, Phys. Rev. Letts, 85 (2000) pp. 1-5.

Here, the quantal impulse cross section was derived in a novel form appropriate for
direct classical correspondence. The classical impulse cross section is then uniquely defined
and yields the first classical expression for né — n'¢/ collisional transitions. The derived cross
sections satisfy the optical theorem and detailed balance. Direct connection with the classical
binary encounter approximation is also firmly established. The unified method introduced is
general in its application to various collision and recombination processes and enables new
directions of enquiry to be pursued quite succinctly. -
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7 Invited Papers Presented at Scientific Conferences

The following four papers were invited papers presented at the following conferences.

1. The Recombination Era from the Big Bang to Modern Astrophysics, Aeronomy and
the New State ( Bose-Einstein Condensate) of Matter, M. R. Flannery, Invited Dis-
course,presented at The Royal Irish Academy, Dublin, Ireland, April 26. 1999.

2. Dissociative Recombination, M. R. Flannery, Invited Paper, presented at the Fourth
International Conference on Dissociative Recombination, Nasslingen, Stockholm, Swe-

den, June 16-20, 1999.

3. Three-Body Collisional Ion-Ion Recombination, M. R. Flannery, Invited Paper, pre-
sented at the Gordon Conference on Simple Systems in Chemistry and Physics, New-
-port, RI, July 11-16, 1999. :

In addition, various research papers were presented at:

1. DAMOP in 1999
2. 17th International Conference on Atomic Physics, Florence, June 4-9, 2000.

3. Atoms, Molecules and Quantum Dots in Laser Fields: Fundamental Processes, Pisa,
June 12-16, 2000. :

Also an Invited Colloquium: ”Recombination”, was presented to the Department 6f
Physics and Astronomy, University of Nebraska, Lincoln, September 30, 1999.

8 Conclusion

During the period (6/12/99-present) of our current AF (SR grant, we have been $1:scessful,
as described herein, in providing (a) an exact classical and quantal theory of collisional
Stark Mixing and (b) the definition and development of a classical form factor which we
have shown is basic to our formulation of (c) a classical impulse theory of nf —n'¢ collisional
transitions. Much more work needs to be done along the lines proposed in my Renewal
Proposal to AFOSR and which, is felt will lead to many more fundamental breakthroughs

as those described in the present report.
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Appendix: Copies of papers published under AFOSR
grant

Copies of the following papers published under the AF OSR grant are attached in this Ap-
pendix:

1.

Classical Atomic Form Factor, by D. Vrinceanu and M. R. Flannery, Physica] Review
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Classical Atomic Form Factor
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The general trends exhibited in the variation of the inelastic form factor in collisional transitions
nl — n'l’, when [’ is changed and n, !, and n’ are kept fixed. are explained solely in terms

of classical mechanics.
principles.

Previous quantal results are reproduced from purely classical mechanics
Our conclusions are valid not only for large quantum numbers (which provide the

usual classical correspondence) but also for other cases, which, up to now have been described -
only by quantal or semiclassical methods. The interesting trends exhibited in the form factor are
directly reflected in experimental and theoretical treatments of collisions involving excited atoms.

[S0031-9007(99)09037-7]

PACS numbers: 32.80.Cy, 31.15.Gy. 34.50.-s

With the advent of new technology which facilitates
the accurate measurement [1] of electron-excited atom
collision cross section there has also been renewed interest
in the theory [2] of collisions involving Rydberg atoms.
Recent experiment [1], in particular, has confirmed that
the cross section for the quadrupole 23S — 33D transition
in e — He(23S) collisions is much higher than that for the
pure dipole 23S — 3P transition at low and intermediate
energies, in accord with the theoretical predictions of
Ref. [3] (Bomn and multichannel eikonal approximations).
Flannery and McCann [4] have noted that this unexpected
behavior is only part of a more general systematic
trend in that (a) the 23S — n3D collisional transitions
are predominant over all other transitions to the same n
value, even for transitions to the electronic continuum,
and (b) there is a unique value I’,, of the final angular
momentum {’ that is preferentially populated in nl — n'l’
transitions (n’ > n) in collisions between Rydberg atoms

* and el _ttrons or atoms. :

.t~ origin of this general behavior was traced [4] to the
v _,ation with I’ of the quantum mechanical inelastic form
factor

Fri(@) = Wy M yi(r)) = (¢s(p + Q)ldi(p))
(1)
for i(n,1) — f(n',l') transitions between atomic states;

i s(r) are the wave functions in position space and
¢is(p) = QmA)™ [y s(r)exp(—ipr/R)dr,  the
wave functions in momentum space.

When an instantaneous impulse applied at ¢ = f; trans-
fers momentum q to an atomic electron, the exact solution
of Schrédinger’s equation under Hamiltonian

H(p.r.t) = p?/2m — &*/r —r - q8(t = 10) (2

Y(r,0) = [1 + ("% = 1)8(t = 10)]mim(r),
where 8 is the Heaviside step function. The probability
for i m [nl) — f = |n'l') transitions from the (2! + 1)
initial sublevels is then

3412 0031-9007/99/82(17)/3412(4)$15.00

Poiwt(q) = Kibwe W) = D n'l'm'le'" A |nim)|?
" 3)

also deduced in [5]. The probability of any impulsive
i — f transition, whether due to particle collisions or
electromagnetic field, is therefore

Pis(q) = | Fri(@)l2 4)

which provides physical significance to the inelastic form
factor, a fundamental property of the atom. For impulsive
collisions between a particle 1 and a Rydberg electron 2
bound to a core 3, the overall transition matrix elemént T
decomposes as [5]

Tis(q) = Fri(@)Ti2(q), (%)

where T2, the matrix element for (1-2) free-free elastic
scattering in the (1-2) center of mass, is a function only of
q. as for Coulomb scattering Ty, = 4mh%e?/q?, or for
Bormn's approximation, Tj; = [ V(r12) expligr/F)dry;.
The probability of transition in the target atom per
each (1-2) impulsive encounter is Py = |Tif|*/IT12f, in
agreement with (4).

The cross section is obtained by the following integra-
tion of the form factor (5) over momentum change,

( = )fk'ﬂ,lf @ If12(q)? qdq. (6
T =\ %ol ) Joiy 77 I 1f2(@)l” qdq, (6)
where k; ; are the initial and final wave numbers of rela-
tive motion of the projectile-target system of reduced
mass M and ¢ = Alk; — ky| is the momentum change.
The scattering amplitude for (1-2) collisions of reduced
mass Mz is f12 = (2M2/4mR?)Ty;. For (1-2) slow col-
lisions with scattering length a, the Fermi interaction
V(r2) = [4ma(h?/M\3)]8(r — ry) also yields decom-
position (5) with fi2 = a.

The inelastic quantal form factor therefore not only
exerts primary importance in collision studies, but also
has a deep physical reality. In recent experimental studies

© 1999 The American Physical Society
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of excitation of Rydberg atoms by short unipolar half-
cycle electromagnetic pulses the transition amplitude is
determined directly by the inelastic form factor (6].

Analytical quantal [7.8] and semiclassical [9] form
factors are available, although general systematic trends
cannot be easily extracted from them. A classical form
factor for n — n’ has been deduced {10] from binary
encounter impulse theory and from a microcanonical
distribution in energy space. A key point of this paper
is that a complementary classical approach for nl — n'l'
transitions can 2iso be developed in a way which reveals,
quite succinctly, important aspects which remain hidden
within the quantal treatment.

Consider a Rydberg atom in a stationary (n,1) state
with energy E and angular momentum L. If the atom
is perturbed by any general impulsive field [as in Eq. (2)
or the Fermi interaction], then the transition probability to
the final state (n’, ') (of energy E’ and angular momentum
L'} is the inelastic form factor.

The quantal probability density for finding the electron
in the radial interval (r,r + dr)is

pl(r) = rAlRul, ©)

where R, is the hydrogenic radial wave function ex-
pressed in terms of the generalized Laguerre polynomial.

The phase space of a classical atom, with Hamil-
tonian H(r,p) = p?/2m + V(r), angular momentum
L(r.p) =r X p, and period 7o = vy in stationary
state (n,!) is populated according to the microcanonical
distribution {8,10]

drdp
2wk)?
normalized to (2/ 's 1),states in all of phase space. On

integrating over the omentum space p and angular part
# of the configuration space r, the classical distribution is

20412

—-—dr,
Tal r

plidrdp = {hvyhis(H — E)S(IL| - L)} ®

pri(r)dr =

where the radial speed is given by mr?/2 =
E - V(r) - (I + 1/2)*R*/2mr*.  For the Kepler
atom (1 = 27n> au.) and py (ina.u.) is

otz 1 _wry]™
Prit? mnd| r n? r?
1 |
= ae (¢)]

The quantal (7) and classical (9) radial probability den-
sities are illustrated in Fig. 1. As in the textbook example
of the harmonic oscillator, the classical distribution has
singularities at the corresponding turning points given by
the radii (in a.u.)

RE = n{l = €} = n}{1 = [1 = (1 + 1/2)/n?]"/?}.
(10)

Classical and quantal

radial density
n=20 |=8

100 200 300 400 S00 600 <¥(a.u.)

FIG. 1. Classical and quantal radial densities of probability
of localization for the stationary state of the hydrogen atom
(E = —1/(2 X 20*) and [ = 8].

The classical distribution is zero outside the accessible
region, bounded by R*.

By using definition (1) the transition probability (3) can
be converted to the new form '

Pi(q) = @mh) f pat(r,p)pnp(r.p + Q) drdp,
(1

where the quantal distributions in phase space are-given
by pYr,p) = (2mhA)"¥2y(r)exp(—ip - r/R)"(p).
This form is now suitable for classical correspondence
obtained by replacing densities p¢ by the phase space
distributions (8). The basic definition of the classical
form factor is therefore given by (8) and (11). The
physical significance is that the initial and final states
correspond to definite regions in phase space, populated
according to the microcanonical distribution (8), and
that the transition probability is given, in a geometric
sense, by the amount of overlap of these regions. In
configuration space alone, the regions are spherical
shells with inner and outer radii given by Eq. (10),
the pericenter (R™) and apocenter (R™) of the Kepler
orbit. :

Analytical expressions with explicit dependence on
q for quantal and classical probabilities for nl — n'll,
nl — n', n — n transitions are developed in a separate
paper (8). Rather than examining the I’ variation of (11)
for a given g, the key results are more readily deduced
and are easily transparent by investigating the probability
for all momentum transfers

Frjmny = f P(q)dq = (2mh) L dr pr(r)pn(r),
(12) .

where R is the overlapping region in configuration
space defined by intersection of (R; ,R") and (R;'.Rf )
intervals.
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Inserting p(r) = 4mp°(r)r? with (9) in (12) gives the
classical form factor (CFF)

@+ [ e 2
:1_.,,'11 = 2‘——'—( 3.3 ) Tii’-‘—'. (13)
n°’n Rmun  Fi(r)rs(r)

where Rmn = max(R”,R;) and Rmu = min(R,”, R})
define the bounds of the overlapping region R. Different
overlap situations are illustrated in Fig. 2 for a represen-
tative case. The gray region is the accessible region for
the initial state and the curves 7. possible final state tra-
jectories. Transitions occur only when the final state tra-
jectory penetrates the initia! s.ate accessible region. The
longer time spent by the electron on the final state trajec-
tory within the initial state accessible region, the bigger is
the transition probability.

As | increases from_zero to its maximum value for
circular orbits, R~ increases from zero to n?, while R™
decreases from 2n? to the same value n2. For final states
n' > J2n, then Rpy = R for all values of /. Three
regions of overlap are then apparent and are, respectively,
accessed as ! is increased.

Region I, Rf < R .—Here the overlap region R=
(R ,R[) is determined solely by the initial state and has
spatial extent which remains constant as I’ is varied from
zero to some value /; where Ry = R . There is always
an orientation of the final orbit which will then intersect
the initial orbit, as exhibited in Fig. 2, for (n =3, | = 2)
and (n’ = 8, I’ = 0 — 2) orbits. The {! variation of (13)
is contained solely within the increasing integrand (/)"

Region Il R < Ry.—Here the overlap region R=
(R7. R") includes the f pericenter and has spatial extent
which decreases, as !’ increases, eventually to zero when
R; = R/. In this region, the initial and final orbits can
intersect each other, as for the (n’ = 8, I’ = 4) orbit in
Fig. 2. The !’ variation of (13; results from variation
of both the increasing lower amit R; and the increasing
integrand (r/)~".

(8.7)
(8.6
(8.5)
8.4

(8.2)
(8.0

A

FIG. 2. Various final state (n' = 8, I’ = 1-7) trajectories
and the initial accessible region corresponding to (n =3,
[ = 2).
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Region I, Ry > R/.—Here the initial and final
trajectories no longer intersect, since the pericenter of the
final state is greater than the apocenter of the initial state.
This region where (i — f) transitions do not occur. as
illustrated by (n’ = 8, I’ = 5,6.7) orbits in Fig. 2. is the
classically inaccessible region.

The boundaries between regions I and II and between
regions II and IIT occur, respectively, at [' = [, where
Ry (n', ") = R{ (n,1) and at I' = |, where Ry (n'.l') =
R’ (n.1). Thus ! and [, are given by

2

where € is the eccentricity [1 = (I + 1/2)*/n7]""? of the
initial orbit.

Variation of the CFF (13), with final angular momen-
tum /' is then determined both by the lower integration
limit R (Which is a constant R; in region I and in-
creases as R in region II) and by the integrand (i’,)".
Figure 3 illustrates the general pattern. As I' is increased
from O to I, (region I), the increase in CFF originates
purely from the increasing integrand (re)~'. As!'isvar-
ied from Iy to I3, the increasing integrand is offset by the
decreasing range (R;,R;") of integration (region II). For
I < I' < n = 1, CFF is zero because transitions are not
classically allowed in region III.

At I’ = |, the trajectories touch only at their corre-
sponding pericenters and CFF has 2 turning point sin-
gularity characteristic of classical descriptions. The zero
radial speed of the electron at the contact point of both
initial and final orbits causes the infinite CFF (transition
probability).

As is evident from Figs. 3-5, the agreement between
the classical and quantal results is excellent in region L
even for small quantum numbers. In region II, the quantal
results oscillate about CFF.:Since classical motion is
confined to a definite region, the dramatic fall for large
I' is steeper than that for the quantal case where states

2
(11_2 + i) =n}1 3 )2 - (17 am/n"]. (19

%1073 :
5
I II III
)
A
N
™
mv
. )
1 2 3 4 5 6 7
Iy Iy

FIG. 3. Characteristic dependence of the inelastic form factor
on the final angular momentum /', for fixed n (= 3), ! (= 2),
and n' (= 8). Classical calculations: solid line; quantal results:
dots.
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x1078

F(35. 30)-(55, I')

Soo-

10 20 30 40 so V

FIG. 4. Classical (solid line) and quantal (dots) inelastic form
factor for transitions from state (n = 35, [ = 30) to (n' = 55,
' = 0 — 54) states. -

have exponential tails within the classical inaccessible
region IIl. As expected from correspondence principles,
for the larger quantum numbers, the quantum form factor
tends to CFF, even in the regions II and III, as shown in
Fig. 4. For quasielastic transitions nl — n!’ the classical
and quantal results are in excellent agreement for all
angular momenta (Fig. 5). The quantal results exhibit
maxima in the neighborhood of I’ = Iy, I, where CFF has
the classical singularities. The position of /; defined by
(14) in the limit of large I, where the eccentricity € — 0,
is [(1 = n = 1) = av2[1 = 1/2(n/n"}*}/? = 1/2, an
exquisite result for initial circular orbits. For n' > n,
I, tends from the bottom to li(l — n — 1,n'>> n)=
nv2Z — 1/2, a key result in detailed agreement with
that previously derived from consideration of the quantal
momentum-space overlap [4].

For small initial angular momentum [, ¢ — 1 and
I, is then zero so that the maximum CFF i:-given by
(1 = 0) = 2nli = (n/n')*)/% = 1/2, »ppropriate
to highly e.centric initial orbits. In the a’ 3> n limit
then l3({ — 0,n’ 3> n) = 2n — 1/2. As the initial [
increases, there is therefore a slow variation (2n — V2Zn)
in the position I of the maximum of CFF, which is

x10°%
12

P20,10-° 20,1’

l'
$ 10 18 20

FIG. 5. Classical (solid line) and quantal (dots) inelastic form
factor for quasielastic transitions from n = 20, / = 10 state.

pushed slightly to lower values. This theoretical predic-
tion is also confirmed by the quantal results [4].

When the energy E' of the final orbit is not sufficient to
accommodate the value of /; deduced above (n' < V2n),
the peak in CFF (as in Fig. 5) is given by /;, provided the
initial { is large enough. When the final n’ is sufficiently
small so that the lower [, cannot be accommodated,
ie., {y > n' = 1, CFF and the quantal result exhibit a
monotonic increase confined to region I, which is always
characterized by excellent agreement between quantal and
classical results. :

In summary, the pattern exhibited by the !’ vanations
(Figs. 3-5) is essentially identical with the quantal pat-
tern. The positions of maxima of the /' variation of CFF
depend strongly on the initial n and only weakly on the
initial {, in agreement with the quantal calculations [4],
which were restricted to certain cases. Excellent quan-
titative agreement between classical and quantal results
makes the classical form factor a very useful tool particu-
farly at large quantum numbers (Rydberg atoms) where
exact quantal results are not easy to obtain (either analyti-
cally or numerically) and to use, due to the highly oscilla-
tory nature of the wave function. Although the emphasis
here is on the electron form factors, the present analysis
is applicable also to form factors for transitions between
rovibrational states of molecules.
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The classical form factor is deduced from exact correspondence with a phase-space representation of the
quantal form factor. Analytical expressions are provided for nl—n'l’, al—n’, and n—sn’ transitions in
hydrogenic systems and for n—n' in the one-dimensi~nal harmonic oscillator. An efficient procedure for
calculation of quantal form factors as analytical functions of momentum transfer, for arbitrary quantum num-
bers. is presented. The classical approach has the ar:liy to explain quite succinctly interesting trends and
various important aspects which remain hidden within the quantal treatment of form factors. The classical-
quantal comparison ranges from being qualitatively good for nl—n'l’ transitions to close agreement for nl
—n' and n—n’' transitions. Excellent agreement is obtained for the integrated form factor for all transitions.

(S1050-2947(99)09107-6]
PACS number(s): 32.80.Cy. 34.50.—s, 31.15.Gy

I. INTRODUCTION

The inelastic form factor
Fa= (W e "MW ,)=(¥ Je'K | W)

is a very basic quantity. It can accurately describe the overall
response and dynamics of an atom or molecule involved in
various processes or external interactions. It is also common
in various schemes of approximation.

The study of the hydrogen atom form factor serves as a
pivotal starting point for the general study of electronic tran-
sitions between highly excited states of atoms and molecules.
The additional effects of the nonhydrogenic core may be
incorporated via use of quantum defect theory. Inelastic tran-
sitions between the ro-vibrational states of molecules can be
studied by appeal to the inelastic form factor for the har-
monic oscillator. .

Inelastic scattering of incident (neutral or charged) par
ticles or of photons (or short bursts of electromagnetic radia-
tion [1]) by a structured target can be decomposed into an
internal structure part, provided by the form factor of the
target, and a dynamic part which depends on details of the
external projectile-target interaction. Bound-bound, bound-
continuum , continuum-continuum, and ionization transitions
are treated on the same footing by using the form factor.

The quantal impulse, semiclassical impact parameter, first
Born approximation, and binary encounter methods of colli-
sion theory [2] focus on the transition probability as a dy-
namic response of the target in the field of the projectile. The
physical significance of the form factor F is that P,(q)
=| |2 is the probability of an internal transition arising from
any external impulsive perturbation (whether due to collision
with particles or exposure to electromagnetic radiation)
which induces a sudden change q to the internal momentum
of the target system [3]. Since any interaction can be decom-
posed as a series of sudden interactions, the scattering Cross
section or other observables are determined by integrating
the form factor, multiplied by some weighting factor charac-
teristic of the interaction, over momentum transfer q. For

1050-2947/99/60(2)/1053(17)/$15.00 PRA 60

example, the generalized oscillator strength f is written in
terms of the inelastic form factor as

where K= q(aq/#) is dimensionless, and where AE, , is the
change in energy between the initial and final states. The first
Bom approximation for the inelastic scattering of structure-
less ions of charge Ze, of speed v, by a hydrogenlike ion of
charge Z'e, is

™| FK)| KK,

Kmm

8wZZ'al (X
a( v)=———f

(vIvp)?

~which can emphasize small momentum transfers K occurring

at high energies. The inelastic scattering of an ultraslow neu-

tral ‘particle by a Rydberg atom is ’

27a® (Kem
a(v)= f | FK)|*K dK.,

(vIvg)*d Ko

where a is the scattering length of the projectile-Rydberg-
electron interaction and vo=e*/A is the atomic unit for ve-
locity. This expression emphasizes intermediate and larger K
occurring within the interaction distance a.

Classical mechanics provides a good quantitative descrip-
tion of excited states via the correspondence principles [4].
Classical mechanics also promotes physical insight into the
process by transparent causality, and provides scaling laws
and elucidation of the dynamics. A phase-space description
combined with statistical properties (microcanonical distri-
bution in most cases) are the basis for an alternative or
complementary view of quantal phenomena.

Based on the recognition of the above fundamental as-
pects of the form factor, this paper presents results for quan-
tal form factors, and defines the classical form factor for the
highly excited hydrogen atom and harmonic oscillator. Clas-
sical mechanics is advantageous here (a) in revealing essen-
tial details of the dynamics for inelastic transitions, (b) in

1053 ©1999 The American Physical Society
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explaining the interesting trends in the behavior of the form
factor (as a function of the various variables), and (¢) in
predicting quantitative resuits inaccessible to rigorous quan-
tal calculations because of the formidable numerical restric-
tions imposed by the highly oscillatory wave functions.

Some analytical quantal [5,6], semiclassical [7,8] and
classical [9.6] form factors are available, but general system-
atic trends cannot be easily extracted from them. A key point
of this paper is that a complementary classic~. approach for
general nl—n'l’ transitions is developed in such a way that
reveals quite succinctly important aspects v:qich remain hid-
den within the quantal treatment. The consistency of this
approach is verified by applying it to nl—n’ and n—n'
transitions. The known results [6] are then rederived in a
unified way. T

The simple example of the one-dimensional harmonic os-
cillator is treated in Sec. II. The correspondence between the
quantal and classical form factor for inelastic transitions in
this system is apparent. On this ground, a generalization for
three-dimensional systems (like the hydrogen atom) becomes
feasible. A definition of the classical form factor interpreted
as a transition probability between two states described by
microcanonical distributions in the phase space, is proposed
in Sec. III. The classical form factor for nl—n’l’ is intro-
duced in Sec. 1V, and compared with the quantal counterpart.
Various summations, over the momentum transfer and initial
and final quantum numbers are obtained within the same
theoretical framework. The classical calculation are based on
the microcanonical distributions presented in Appendix A. In
Appendix B the classical calculations are detailed. An effi-
cient algorithm for calculation of the various quantal form
factors is introduced in Appendix C.

IL. FORM FACTOR FOR THE HARMONIC OSCILLATOR

The simple example of the one-dimensior.i harmonic os-
cillator with the Hamiltonian

H=p2/2m+mw2rz/2

is considered in this section. The quantized energy levels are
E,=(n+12)hw, and the corresponding wave functions
u,(r) have the generating function

- u,(rye”

a=0 \/ﬁ

Xexp{—(r/ ro)?r2+ \ﬁ:r/ ro— 1212),

F(t'r)= ’ﬂ-u‘r‘;m

where ro= JA/mw is the natural length of the oscillator.
The inelastic form factor for the transition from level n to
level n’ when the momentum q is transferred is defined as

fnn’(q)=<un’|eiq’l“|uu)'

and has the generating function, in terms of the dimension-
less variable Q=qro/ V24

» . "™
)= 2 P o

=exp(— QZ/Z)CXP[‘Z+i('+Z)Q]'
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This function provides an easy way to compute the form
factor by using

1 " 1(n2:0)

- (D
d"td"

'an'—

va'tn'! Lm0
and reveals the following analytical structure of the quantal
form factor £or the harmonic oscillator:

"rnh'=exp(—Qz/2)wn*n'(Q)‘

where W, is a polynomial of order n+n’.

The square of the absolute value of the form factor can be
interpreted as the transition probability of the harmonic os-
cillator when an impulsive interaction imparts momentum q
[3]. Based on this observation, a classical analog of the form
factor can be defined. Consider the phase space to be popu-
lated according to the microcanonical distribution. The tran-
sition probability is then given, in a geometric sense, by the
volume of that region in phase space where both initial and '
final states can coexist.

The density of probability in phase space for a given state
of the harmonic oscillator is

pa(r.p)=N&H(r.p)—(n+1)hw),

where the normalization factor N=w/27 ensures onec par-
ticle in all of the phase space. The transition probability is
then given by the conditional probability that the the system
in the initial state n is in the phase-space volume element dr
dp, and the g-displaced final state has quantum number n'
within the same volume element. Hence

fw?
Ppnilg)= WJ’ drdp8(H(r.p)—(n+}hw)
X S(H(r.p+q)—(n'+3)hw) .

Phase space integration yields

Pun(@)= =[=Q*+2(n+ "+ 1)@= (n=n")1] 1,
2

where the dimensionless parameter Q2=(g%22m)/hw is,
again, q2ri/242. Then

1
Pa(2)= =[(Q%-0))(Q*-01)] 7",

which shows that g is restricted to those values for which the
square root is a real number; otherwise the transition is clas-
sically forbidden, and P,, is zero. The limiting values of

Q=0Q. are given by .
Qi=(n+n'+1)=\V(2n+1)(2n" +1),

where the probability P,,. exhibits characteristic classical
singularities. The classical transition probability (2) satisfies
detailed balance. The transition probability for elastic colli-
sion (n=n') is
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FIG. 1. Classical and quantal transition probabilities for the (n
=10)—(n’=20) transition in the harmonic oscillator vs momen-
tum transfer Q.

1
P""(Q)=E{2(2"+l)_(22]°m_ 3)

The advantage of using the classical transition probability
is illustrated by the following example. Consider the 10
—20 transition. The quantal expression deduced from Eg.

(1),
e -Qn on
(- 670442572800
52254720001323323
+ 609493248000 Q2 — 228559968000 Q*
+ 46884096000 Q° — 5860512000 Q°
+ 468840960 0 '°— 24418800 Q2

+820800 Q'*~ 17100 Q‘5+ 200 0'8- Q%)

Flo—20(Q)=

is rather large. and is numerically inefficient due to the os-
cillations in the wave functions. The classical transition
probability (2), however, has the simpler form

1
Pioa(Q)= ;/ V=0*+62Q%-100

within_the classically allowed range 31- V861 Q<31
+ 861.

The classical P,, and quantal | F,,|? are compared in
Fig. 1. The comparison exhibits excellent *‘background'’
agreement within the classically allowed region of Q, the
characteristic classical singularities at Q. , and the charac-
teristic exponential quantal tails in the forbidden region. The
number of quantal oscillations in F,,  is given by
min(n.n')+1 which occur within the extent [(2n+1)(2n’
+1)]"? centered on the median value (n+n'+1) of the Q?
range.

The classical transition probability for any momentum
transfer (or the integrated form factor) is

pe= [ Pa@rd

_EQ‘ 2_n2 2_z-|rz'
—ﬂfo_uo 01)(Q%-09]"?de,
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FIG. 2. Classical (solid line) and quantal (dots) transition prob-
abilities for any momentum transfer g from the state n =4 to states
n’'=0-20.

which reduces to

;Z_:[F(; l—_:f;) + \/—l—:-_—SF(arcsin \/gi ;)}

where s=1-0%/0%

Pnu'=

in terms of the incomplete elliptic function F. -

Figure 2 shows that there is an excellent agreement be-
tween the quantal and classical transition probabilities for
general n—n’ transitions in the harmonic oscillator for any
momentum transfer. The singularity at n’ =n arises from Eq.
(3). The characteristic agreement is displayed in Fig. 2.

III. PHASE-SPACE EXPRESSION FOR THE FORM
FACTOR

The quantal amplitude
FAQ=(¥AD| "W (1), =(PAp+q)|PLAP), @

is expressed as the abov-integrations over either configura-
tion space or over momentum space, where the momentum
wave functions are defined as

¢(P)=(2ﬂ'ﬁ)"mj Y(r)exp(—iq-r/h)dr.

The transition probability
PAQ)=K WA v W ()P &)
can therefore be expressed as
(ZAD|eT Y (1) DA+ Q)| DAy
- [ araprpmer oo pral
X[¥,(r)e" P72 d*(p)].
The quantal phase-space distribution may be defined by
p(r.p)=(2mh) ¥ (r)e P "*d*(p)

since the probability densities p(r) in configuration space
and p(p) in momentum space (obtained by integrating the
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quantal phase-space distribution over momentum or configu-
ration space)- yield p(r)=fp(r.p) dp=[‘If(r)]2 and p(p)
=|d(p)|?, respectively. This distribution is the standard or-
dered version [10] of the Wigner distribution [11].

The transition probability is therefore

P.r(q)=(21rﬁ)’J'drdpp,»(r.p)p}‘(rqu). (6)

This expression for the transition probability is now in a
form appropriate for classical correspondence, obtained by
replacing the quantal densities p; ¢ (even though p; ; have no
direct physical interpretation) by the classical phase-space
distributions p°(r,p). Thus

>

Pu(q)=(zvrﬁ)3fdrdppf(r;p)p}(r-p+q) ™

is the basic expression for the classical probability for impul-
sive transitions. The number of initial states in the phase-
space element drdp is p; drdp, and (2#)3p; is the prob-
ability that the final state is in the same phase-space element.

Two fundamental properties, corresponding to similar
properties of the quantal result (5), can be readily proven for
the classical transition probability (7). The classical distribu-
tions satisfy

p(r.p>~—-§ pa(r.p)=(2mh) 2,

which means that the total number states in the phase volume
element is dr dp/(27#)>, the number of elementary phase-
space cells. The probability of transition from initial state i to
all states f is then

; Pg= f pi(r.p)drdp=g;,

the statistical weight g; of the initial state. The second prop-
erty provides the transition probability for all momentum
transfers q. Integration of Eq. (7) over all possible values of
the momentum transfer q involves

J’ p(r.p+q)dq=fp(r.p')dp' f &p+q-p')dq

=p(r),

where p(r) is the classical distribution in configuration
space. Then

f P dq=(2vﬁ)’f pi(E)pyr) dr. ®)

This classical property is again in correspondence with the
quantal result

[ 1Pk da=2mhy [ 12D dr. O

which can be derived from Eq. (4).
In the action-angle representation for bound states, the
classical distribution is

PRA 60

po(dw) dJ dw= 8(JIh—n) d] dw!(2mh)P
for a general D-dimensional system with a set of action-
angle variables (/.w) in a state specified by the set of quan-

tum numbers n. The classical probability for g — n’ tran-
sitions is therefore

p.,(q)=(21rﬁ)'0ffa(z/h-a>5f!'/h-e"
X 8(p+q-p') 8(r—r')d dwd] dw’, (10)

which provides a more general classical correspondence with
the quantal expression (6), rewritten as

Pit(q)=(2“ﬁ)3j f drdpdr’dp’ pi(r.p) pAr’.p")
X8(r-r') 8(p+q-p').

These expressions emphasize the impulsive nature of the
momentum transferred. :

IV. FORM FACTOR FOR THE HYDROGENIC ATOM
A. Form factor for nl—n’'l’ transitions

The classical distribution for an atom with given energy E
and angular momentum L, in (r,p) phase space is (Appendix -
A)

p(E,L;r,p)dEdL drdp

drdp
(2mh)*

=dE 8(H-Ey)dL &(|Li-L) (11)

where both the Hamiltonian H(r,p)=p?/2m+ V(r) and an-
gular momentum [L(r,p)| =rp sin 6, are constants of mo-
tion. The classical transition probability for the case of a
central field one-electron atom, between the states, or bands
of states centered at (E,L) and (E’.L"), due to momentum
transfer q, is then

P(E.L;E'.L';qQ)dEdLdE’ dL’

J‘ drdp
=dEdLdE'dL’
(2mh)°

&(H(r,p)—E)

x 8(|L(r,p)| = L)6(H(r,p+q)—E)

x 8(L(r.p+q)|-L"). (12)

The quantity P([';T'';q) is the transition probability density
(per unit intervals dT &I'’). When E, E', L, or L’ are quan-
tized, the transition probability between corresponding states
are obtained by the formal replacements dE—hv, and dL
—# on the right-hand side of Eq. (12). The transition prob-
ability between bound states with given quantum numbers
(n.,1) and (n',l") is then '
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Pnl.n’l'(q)=hynlhyn'l'ﬁ2

X P(Enl.(l+ l/2)ﬁ;E,,'_,: .(1’ + l/2)ﬁ).
(13)

where v,,= 7' is the radial frequency of the classical orbit.

Since the densities used in Eq. (13) are already normal-
ized to (2/+1) particles in all of the phase space (see Ap-
pendix A), Eq. (13) represents the basic definition of the
classical form factor, in direct correspondence with the (sym-
metrical) quantal form factor

Fanr(@)=2 2 [nlmle ™ n'l'm")|2. (1)

The physical significance of the basic expression (7) is that
the initial and final states correspond to definite regions in
phase space populated according to the microcanonical dis-
tributions (11). Transitions can only occur if these two re-
gions overlap, and the amount of overlap is a measure of the
transition probability. The classical form factor (13) which
has been developed in detail in Appendix B, will be directly
compared with the quantal result of Eq. (14), developed in
Appendix C as a function of g for arbitrary n/—n'l’ wansi-
tions.

The result of the classical calculation (13) (see Appendix
B for details) is

2020+ 1)(21' +1)43

Pnl.n'l’(q)=[

TaiTatl

N j dr/rZ{G{;(r.q)‘*Gi?('.Q)
R

p ]O(r.q).

"
(15)

where ©(r.q) is the step function having value unity within
r<r* (given in Appendix B), and zero otherwise, and the
function

1
V(gt-A%)(Bi-q%)

Gi(r.q)= (16)

must be real, so that ¢ must be within the classically acces-
sible range R given by

Al=mi(r=f)+(L-L")r'sq*<BL
=m(rzr)i+(L+L")HR

The radial velocity r (r') is a function only of r for a given
nl (or n'l') state. For a given momentum transfer g, the r
integration proceeds over the radial ranges within which the
square roots in Eq. (16) are real. This situation is illustrated
in Fig. 3 for the (4,3)—(8,2) transition in the hydrogen
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FIG. 3. Integration region for a typical (4,3)—(8.2) transition.

atom. The dotted curve is the boundary (r,—r=0) of the
region within which the function © is unity, and which en-
compasses the physical accessible region A_<q<B8.,.
When g is small (below the A_ curve) or large (above the
B. curve), G; has complex values and the transition prob-
ability is necessarily zero. In the shaded regions only Gy (a)
or Gy (b) or both G (c) can contribute to the integral for a
given . The range R of radial integration always lies within
the region specified by A,=A_= real and B.=8_
= real. The boundaries of this region are then given by
Rmin=max(R] R;) and Rp,=min(R; ,R7), where R~ and
R™ are the pericenter and the apocenter of the Kepler orbit.
The three situations possible (details in Ref. [3]) for the over-
lap of the initial and final orbits are illustrated in Fig. 4 as L'
of the final orbit is increased. Region I gives the maximum
overlap when region R=(R; ,R) is specified only by the
initial state. In Region II the overlap is partial, becaus~ .ne
lower limit of R is given by the pericenter of the final or_ .t
R; . In Region Il the pericenter Ry has moved outside R T
so that there is no overlap, the transition is classically for-
bidden.

The quantal transition probability for bound-bound transi-
tions, for hydrogenic atoms, is a rational function in the mo-
mentum transfer g. The proof of this statement and the algo-
rithm for quantal calculations are presented in Appendix C.
The form factor for the (4,3)—(8.2) transition, as a function
of g, is '

(I) total overlap  (II) partial overiap

l‘l ‘
LN &

Q—L—"I < [) {h
ll

FIG. 4. Overlap situations for fixed initial n, /, and n’ and
varying [’. :

(III) no overlap
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3435973836842

Pirgalq)= R
43 E.Z(q). (9+64q.)24
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(1977006755367 — 843522882289924° — 529809730201313284* + 914957411 105636352¢°

+ 5570177455807078072324% + 491446003263768782438404 10+ 1304678925402985186983936¢ 2
— 12446091865892540818391040q ' + 8396838436724796775968276484 ¢
+52697684561309996604 1738444848+ 226149481324737121139390676992¢%°

— 34900134544 14646748315 1488778243 + 22442701 774022980630594896003072¢ >

— 63431755657397448352885433696256 %+ 664586369237176155513583262760964°).

The results of calculations for the quantal and classical prob-
abilities (form factors) are compared in Fig. 5. The four sin-
gularities in the classical transition probability, which indi-
cates maxima in quantal results, correspond with those
values of the momentum transfer for which the (q
= const) line is tangent to one of the curves Az =4 or B
= =4 in Fig. 3. One of these equations has then a double
root in r, which eventually yields after integration a logarith-
mic singularity.

In Fig. 6 the quantum numbers n,l, and n' are fixed and
the transition probability versus the momentum transfer g is
plotted for various final angular momenta I’. As !’ increases,
the quantal and classical transition probabilities increase, and
attain a maximum for some value of I'. This value is roughly
given by /' ~n 2, in agreement with the results derived in
Ref. [3]. Further increasing !’ produces a sharp decrease in
the quantal transition probability. The classical transition
probability is forbidden for I'=6 and 7, since there is no
overlap at all between the phase-space regions occupied by
the initial and the final states, for any momentum transfer g.
This situation corresponds to region III of Fig. 4. The quantal
results for I’ =6 and 7 are therefore clas::cally inaccessible.

When the final principal quantum number n' is varied,
keeping n, [, and !’ fixed, the shape of the transition prob-
ability versus momentum transfer is preserved and the mag-
nitude rapidly decreases as n’ increases. This observation,
valid for both quantal and classical cases, is demonstrated in
Fig. 7 for a specific case. Because the transition probability
(14) contains the factor 1/7'~ 1/n’?, the classical form factor
provides an explanation for this behavior.

0.012 P4'3_.8‘2(Q)
0.01 i
: Ly
0.008 i
: \,/ quantal
0.006
‘.‘! \ o classical
0.004 !
0.002 ‘
/ q
/ e
0.2 0.4 0.6 0.8 1

FIG. 5. Quantal and classical transition probabilities for the
(4,3)—(8.2) transition.

—

When the final state is in the continuum with energy be-
tween E' and E'+dE’, result (15) is still valid provided
hv,p is replaced by dE’. The probability for a bound-free
transition is then

., . [1+ D21 +1)AE’
Pul.l’(E 1q)dE’=

TThi

y f dr/rz[c;;<r.q>+cs(r.q)]
R q '

Fir2

B. Integrated nl—a'l’ form factor
The integrated form factor or the transition probability for
any momentum transfer is the integral of the g-dependent

transition probability over the g space. The quantal calcula-
tion gives

0.08
0.06
0.04

0.02

0.08
0.06
0.04

0.02

FIG. 6. Quantal (a) and classical (b) transition probabilities for
the (4,3) — (8,') wransitions, with I' =0, ....7.
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f \F?, (@l dg

=(2ﬂﬁ)3qu 2 "{,nlm(r)lzz |‘yn’l’m’(r)lz'
which, with W(r)=(R,;/r)Y (). reduces to
f
| Fra(@ltdg

=2m 20+ )2+ 1)ﬁ3j pd(r)pd. (r)drirt, (17

where p?(r)dr=RZ(r)dr is the radial probability.
Integration of the corresponding classical transition prob-
ability (8) gives

8221+ 1)(21' + )R [ (drir?)

nn R I.'l"'z
(18)

f Pnl.n’l’(q) dq:

Upon integration, Eq. (18) yields

8
P,,.w=mr(arcsinﬁl Us)[(x3=x2)(xe=x)]" "7

(x3=x3)(x4—xy)

NG ke A2 etV
wim s (x3=x)(x4—x2)

v'ere F is the incomplete elliptic function and x; (i
=1,2.3, and 4) is the sorted set (R ,R; .R; .R;). When
there is no overlap between the initial and final states (R,f
<Rj) the transition is of course classically forbidden (situ-
ation III in Fig. 4). Comparison between the quantal and
classical expressions reveals the definition of the classical
radial probability: p°(r)dr=2dt/7, in agreement with the
customary correspondence (deduced in Appendix A). The ¢
integrated transition probabilities for fixed initial quantum
numbers n and [ and final n’ as function of the final angular
momentum !’ are shown in Fig. 8. There is excellent agree-
ment between the quantal and classical calculations before
the first singularity in {’, which marks the transition from
region I to region Il in Fig. 4. For larger ', the quantal
transition probabilities oscillate about the classical transition
probabilities. As proven in Ref. [3], there is a limiting value
I, of I" after which the quantal transition probability expo-
nentially decays while the classical form factor is zero. This
situation corresponds with region IIl in Fig. 4, where the
transition is classically forbidden. If this special value of I’
cannot be accommodated, because [, >n’ — 1, the transition
is classically always permitted and the quantal transition
probability has no exponential tail. This is the case of quasi
elastic transitions (between the same principal quantum num-
bers), as presented in Fig. 9. For this case, the agreement
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q
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FIG. 7. Quantal (a) and classical (b) transition probabilities for
the (4,3) — (n’,5) transitions, with n’ =6, ...,12.

between quantal and classical calculations is excellent for
any I'. The q-integrated form factors were discussed in Ref.
(3]

C. Form factor for nl—n’ transitions
Summation over the final angular momentum number !’
provides the form factor

a'-1

Pun(@=2 2 Knimlev™n'I'm" )2 (19)

'=0 mm'

The basic definition (7) gives the classical analog for this
form factor:

P,.l...'(q)=(21rﬁ)’f drdp p,(r.p)p.(r.p+q),

where the densities p,; and l-averaged p, are described in
Appendix A. Using V(r)=E~- p2/2m, the final distribution
is rewritten in the r independent form as .

pur(t.p+q)=(hvy ) A(p+Q)*12m—pli2m
+E—E')I(2mh)3.

where # means ‘‘not r."”" The classical transition probability
for impulsive nl—n' transitions is then
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FIG. 8. Quantal (dot&f)'and classical (solid line) transition prob-
abilities for the (35.30) — (55.I') transitions, with !'=0, ... 54.

Pnl.n’(q)= j dP Pnl(P)Pn'(P'*'Q),

which is the classical overlap only of the momentum space
distributions, rather than the full phase-space distributions, as
in Eq. (12) for nl—n'l’ transitions. Since

j é(pq cos qu/m+q2/2m+E—E')d;;=21rmlpq

for p>po=|2m(E’ —E)—q*|/2q, and zero otherwise, this
transition probability reduces to

2m™m
q

Pnl.n'(q)= (hvn')f Pnl(P)PdP.
Po

which involves or'y the momentum distribution of the initial
state. The sane result is also obtained in Appendix B by

Piralq)=
43-3(q) Sor6aqgh)"

FIG. 9. Quantal (dots) and classical (solid line) transition prob-
abilities for the (20,10) — (20.1') transitions, with {'=0,..., 19.

(summing) integrating the original probability Pas+ Over
all possible final angular momenta. The probability for n,l
—n' transitions in hydrogen is

~

2(21+1)

mqn'?

2.2 21-12
x[l_(l.(l;rzxpp )) ] R,

P+

Pun(q)= —(1+n?p?)~?
! PeninP P

where all quantities are in atomic units, and L=1+1/2. The
limits of integration are given by P rin=max(py=|g?+1/n"?
—1n?|12g, p_), where p.=(1=(1=L%n?)'?)/L are the
extreme values (at pericenter and apocenter) of the momen-
tum of the electron on a given orbit. As a specific example,
consider the 4,3—8 transition. The quantal form factor is (cf.
Appendix C)

34359738368 ¢2 5 . 6
27TPR0 T 9721215+ 4498478208 g2 + 471603326976 g* + 6554684489728 ¢ - 451062079160320 ¢

+6344423684177920 ¢'°— 12676750592966656 92~ 12899470417068032 ¢ '+ 535928355657089024 ¢ ‘¢

+450359962737049600¢'%).

The classical and quantal form factors, are compared in Fig.
10. The insets show the p integration range as a function of
the momentum transfer q. Three special cases are presented:
(a) excitation, (b) quasielastic transition, and (c) de-
excitation. For g sufficiendy small that po>p +, the transi-
tion is classically forbidden [cases (a) and (c)}. As g in-
creases, the integration limits of Eq. (20) are (po.p+)- The
increase of P in cases (a) and (c) is due to the effect of
increasing range of integration overwhelming the back-
ground g ' decrease. With a further increase in ¢, the inte-

—

gration limits change to (p_'.p*) which are independent of
g. Here P decreases purely as g~', as in (a) and (b). For
larger g, the more rapid decrease in P results from 2 ¢~
variation combined with the effect of a decreasing range of
integration, as exhibited for all cases. The transition is again

classically forbidden, for all cases, in the limit of large ¢

. when po>p.. These three overlap situations described

above are illustrated in Fig. 11. For deexcitation (£’ <E),
po has always one minimum value pg =[2m(E-E")]"~
When pd >p_ , then the pattern of case (c), with momentum
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limits (po.p-). is established. This occurs for de-excitation
to levels n’<An.(n,L)=(L/\j_2-)[l—(l—Lz/nz)m]'m De-
excitation to levels n' >n . is characterized by the pattern of
case (c). When pg>p., transitions are classically forbid-
den. This occurs for de-excitation to final states, n'
<n_(n.Ly=(LIy2)[1+(1=L*n?)'?]"'2 whose orbits
are fully within the orbit of the initial (n,L) state. The n_
limit therefore delineates the classically allowed from classi-
cally forbidden de-excitation trz 1sitions. The n. demarca-
tions are illustrated in Fig. 11. For excitation, py can be zero
at g*=[2m(E’' - E)]', so that there is always a range of
transition momenta g for which po<p_ i.e. n'>n.(n.L).
Excitation is therefore always characterized by the pattern of
case (a). The quantal-classical agreement for nl—n' transi-
tions is overall very good.

D. Form factor for n—n' transitions

The classical probability of transition between states

specified only by their principal quantum numbers as func-
tion of the dimensionless parameter Q=gaq/Z#% (as derived
in Appendix B) is

382205952 107 g% (289+ 14400 ¢%)*?
(529+ 14400 g*)*

Po_al(q)=
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Leter

n

29

PoalQ)=——=0% 0*+2
w0 31r(nn’)3Q e

b s
\n® n'*
which is the classical correspondence of

n=ln'=-1

P,.n'<q>=120 S S (nimle ™M n'l'm ).
=0 "=0 m.m’' .

an

This quantal form factor (as derived in Appendix C) is again
a rational function in the momentum transfer g since is a
summation of P,,+;» form factors. The classical result is in
agreement with the result deduced by Vriens [9] from com-
parison of binary-encounter and Bethe treatments of
electron-atom collisions, and by Borodin [12] from the mi-
crocanonical phase space distribution 8(H - E).

Exact quantal and classical form factors for 6—40 tran-
sitions are compared in Fig. 12. The expression for the quan-
tal form factor for this specific transition

(609748651778452988718867471792636791

+1411176845994965835001817764524075792% 10? ¢* - 184318171941496097624317093441846656 |

X 10° g* +93670997716818370857325330958800896 X 107 ¢° — 2400432080403014981637748114489344

X 1010 g8 + 34865881226093843259112916256817152% 10'? ¢'0— 2927694744198493018588901567102976
X 102 12+ 14387567274612996874680196399104 X 10 ¢ '~ 395454399288571654223098281984

x 1017 g'6+ 5 ,1746343048968862171136 102 ¢'3— 396176923859529631650545664 X 10™° g*°

+1656184316737309252780032% 102 g%)

is an application of the general expression for transitions 6
—n' presented in Table . These results are derived in Ap-
pendix B (classical form factor) and Appendix C (quantal
form factor). Due to the correspondence principle, there is
excellent agreement between the quantal and more compact
classical expressions n’»n» 1. The agreement is also ex-
pected because the characteristic classical singularities in the
form factor are **smoothed’’ after the I, I’, m, and m’ sum-
mations.

V. SUMMARY AND CONCLUSIONS

Based on the phase-space description of an atomic sys-
tem, classical expressions for the inelastic form factor have
been derived. The formulas obtained are the exact classical
correspondences of the quantal form factors. The classical
methods quite succinctly reveals important aspects which re-
main hidden in the quantum treatment. An efficient algo-
rithm for calculation of quantal form factors as analytical

—

functions of momentum transfer ¢, for arbitrary initial and
final states, has also been developed.

For nl—n'l’ transitions, the classical method provides
both the qualitative behavior of the quantum results and its
physical interpretation. The classical-quantal agreement is
particularly noteworthy for the integrated form factors (cf.
Figs. 8 and 9) for inelastic and quasielastic transitions. This
is because both classical and quantal form factors depend
only on the overlap of the initial and final distributions in
configuration space [cf. Egs. (17) and (18)), so that the clas-
sical singularities apparent in Fig. 5 are averaged to produce
the smooth results in Figs. 8 and 9.

The increasing accuracy obtained upon !’ integration is .
due to the absence of the multiple delineation of the phase
space associated with nl/—n’l’ transitions (see Fig. 3).
Again the classical picture not only provides the physical
explanation for the quantal behavior when the momentum
transfer ¢ and quantum numbers are varied, but also identi-
fies the patterns associated with each type (excitation, quasi-
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elastic, and de-excitation) of transition {cf. Fig. 10). The
agreement between classical and quantal integrated form fac-
tors is again excellent. In the limit of summing over all final
states, the total transition probability is Z,Pi(q)=g,. the
same result for both quantal and classical cases, which en-
sures full agreement in this limit.

On integrating over angular momentum quantum number
[ for n—n' transitions, the agreement is excellent for all ¢
even for small qusntum numbers. This is due to the fact that
the phase-space region common to the both initial and final
states (a sphere 1n configuration space with i radius r,) is
densely and continuously populated.

The classical form factors represent an attractive approach
for classical collision theory. The form factor is a collision
kernel to be convoluted according to the dynamics of the
external interaction causing the transition. Due to the oscil-
latory nature of the wave functions, quantal calculations for
processes involving highly excited states are still computa-
tionally expensive (in terms of precision, memory, and/or

(a)

— classical

0.2 0.4 0.6 0.8

(b)

(c)

0.08
0.06
0.04
| P
0.02 813"4((-1)
q
0.2 0.4 0.6 0.8

FIG. 10. Quantal and classical transition probabilities for (a)
(4.3)—8, (b) (4,3)—4, and (c) (8,3)—4 transitions as a function
of the momentum transfer. Insets: the gray area is the integration
range.
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n

(a)

de - excitations

0

n

FIG. 11. The three overlap situations in momentum space: in
region (a) there is-a value of q for which po<p_: in region (c)
po>p- for any g, even though po<p, for some g: in shaded
region transitions are classically forbidden, po>p.

time), while classical models are capable of exact results,
according to the comrespondence principles [4]. Although
classical-quantal -comparisons have been made to the one-
dimensional harmonic oscillator and to hydrogenic systems,
classical form factors can be useful for other atomic and
molecular systems. The present method would also be valu-
able in determining the response of the three-dimensional
Rydberg atom to a train of unidirectional short pulses of
electromagnetic radiation [1]. The classical form “factor
methods would be also useful for excited-atom collisions

{i3]).
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APPENDIX A: MICROCANONICAL DISTRIBUTIONS

The basic classical probability density for a particle mov-
ing in a symmetrical potential V(r) is given by the microca-
nonical distribution

R ~40(@)

0.015

quantal

classical

0.005

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 12. Quantal and classical transition probabilities for the 6
—40 transition as a function of the momentum transfer.
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TABLE 1. Quantal form factor {Eq. (21) from text] for 2’ —n transitions.
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p(E.L.L,:r.p)dEdLdL drdp

(2mh)>’
is
(Al)
where the Hamiltonian H, angular momertum |L|, and the p(E.L;r,p)dEdLdrdp
projection of the angular momentum on z axis L-Z are con- drd
served quantities, and specify the state of the system. Vari- ={8(H—E)dE &(|L| - L)dL} —

ous other less restrictive [14] distributions are directly de-

={8(H-E)dE &(L|-L)dL &L-z-L,)dL;}

(2mh)

duced from Eq. (Al) by dropping from Eq. (Al) those &
functions which correspond with the restrictions on the state
drdp of the system to be relaxed. For example, when the projec-
tion L, of the anguiar momentum is arbitrary, the distribution

(A2)
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and describes a population of 2L states in all of phase space.
The physical interpretation is that Eq. (A2) is the number of
states (phase-space cells) compatible with energy and angu-
lar momentum conservation. The { } factor is a fractional
number of states in the interval dEdLdL, of about
(E.L.L.).

If the system is described in terms of discrete quantum
numbers, e.g.. the motion is bounded within a finite spatial
region. the classical distribution is defined in the action -
angle representation by

Puimdd dw=8(J,Ih=n) 83/~ (1+1/2))

dJdw
(2mh)>

X 8(J3 /h=m)

-

Upon action-angle variables (J,w) integration, this distribu-
tion corresponds to a single particle in all of phase space.
AlsO Z,imPrim=(2mh)"? is the number of particles in all
states occupying the unit phase-space element. The phase-
space distribution for state nl is

pudd dw=8J,1h=n) 8J3/h—(1+172)]

del djz d.’3 dW| sz dW3
(2wh)?

Since J;=J,cos L-z, the J; integration gives 2J,, so that the
above p,, distribution corresponds to a population of (2!
+1) states in all of phase space.. The corresponding distri-
bution in (r,p) phase space is then, by changing variables

oH(J, . J2)|[dL(J3)
p,.,drdp=h2[ 81'1 ZH aJ: S8(H(r,p)—E,)

X S(L(r.p)] ~ )P
P )

Since H/3J,=v,=T,', the frequency (or inverse period)
for radial bounded motion, then

drdp

(2mh)*
(A3)

pu(r.p) drdp={hv &H—E)h&|L|-L)}

This result can be obtained, formally, from Eq. (A2), by
replacing dE and dL by hv, and &, respectively. The sepa-
ration between highly excited neighboring energy levels n
and n=1 is hv,,, the Bohr correspondence, and 4 is the
separation between neighboring angular momentum levels
n,landnlx1.

By noting that

1 2L
f a(rpsino—L)d(mso)=7’;(r2p2—L2)“".
-1

p?'L/f=po

and
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E ] d .
8(p*2m+V(r)—En) -TTP'E',—'
(rPp*=LH)'"?

Prun

m

“Eroe

for p2=2m(E,—V(r))=pl,,. which ensures real radial

speeds r, then
. dr R
f &F - E,)8(|L| - L)drdp=8mL § — =87'Llv,.
. r

Distribution (A3) is thus confirmed as being normalized to
(21 +1) sates.

Since drdpl.(21rfl)’ i the total number of bound and
continuum states, with ali quantum numbers, in the phase-
space volume element drdp=dJ dw, then the { } factor in
(A3) represents the fractional number of states with specific
quantum numbers. .

For the particular case of Coulomb attraction the energy
levels are degenerate. The phase-space distribution for an
hydrogenic atom in the energy level E,, corresponding with
the principal quantum number n, is

drdp
,p) drdp=hv,8H—E,)——— A4
pa(r.p) drdp=hv,& E)(”ﬁ)3 (A4)

for bound states of degeneracy n?. The same expression
holds for states in the continuum if hv, is replaced by dE.

The classical distribution p,(r)=Jp(r.p)dp in con-
figuration space is

. g 2drdr
Pailr) rzdrdr—r—"’—r_—z; _

where g,=2I/+1 is the statistical weight of the n/ level. For
Coulombic attraction, V(r)= —Ze¥/r, r,=2mn’ au., and

4mp,(r)r’dr=R,(r)dr

1 (22 Z¢ a+1)?\ 7"
TR — A S— . S————————— ’-
w3\ raw  n? ri‘L

for one nl state (g;=1).

Integration of Eq. (A2) over the configuration space
yields the momentum space distribution p(E.L:p)
=fp(E,L;r,p) dr. Then

p(E.L:p) p*dpdp .

__& [ 2 pdp 1
zvﬁzl 3 (pZ_LZ/r"Z)IQIVr(r‘_)I

dp
47’

(A5)

where r; are the roots of p>=2m[E—V(r)] for a given p
and V'=dV/dr. The radial momentum distribution, p,,
=p(E,L)hv, #, for bound hydrogenic states, reduces with
gi=lto .
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N b
2Ze"

Pailp) 4vrp:dp=(

1 +x2)72
e )

in

( 2mlEILY (£F+1)7)
x l- 2,9 A
(2mZe=)-  x-
where x=p/(2m|E|)'?. Since E=—Z(e*/ag)/2n°, then x
=plp, where p,=Zp,/n is the characteristic momentum in
the Rydberg orbit n, po=#fi/a, is the atomic unit for linear

momentum, and a, the Bohr radius is the atomic unit for
distance. With L=(/+1/2)%, the hydrogenic momentum
,, 4 dP
pnp)4mpdp=—n

distribution is
(I+ 1/2)
T (l+’12P2)2 n

[+n2PZ 2y -1
2nP )]] ’

X

where P=p/Zp,. This compares formally with the quantal
results and is useful for the nl—n' classical form factor.
Another formulation of classical momentum distributions
was recently presented in Ref. [15].

APPENDIX B: CALCULATIONS OF CLASSICAL
FORM FACTORS

The classical form factor for transitions between energy
and angular momentum bands (E,E+dE.L,L+dL) is

P{q)=P(E.L:E'.L';q)dEdE'dLdL’
=(2mh) *A[{qQ)dEJE' dLdL’
in terms of the phase-space integral
Au(q)=jdrdp 8(H(r.p)—~E)&(|L(r,p)| - L)
X 8(H(r.p+q)—E")S(L(r,p+q)|-L")
of & functions involving states i=(£,L) and f=(E',L").
For transitions between bound states the transition probabil-

ity is obtained simply by the replacements dE—hv and dL
—#. The integral can be recast in terms of the radial integral

. 1 [ .
Rdpy.p2ir)= GIﬂ&(rp, sinf-L)

2w
X d(cos ) J; &(rpysin8-L')dé,
(B1)

where 8 and § are the angles between 7 and p, and p,.
respectively, as

Aidq)= f dp, dp, 8(q+p, - p2) 6(H(r.p,)—E)

X 8(H(r.py)— E' Y47 Ri(py.p2:r) ridr).
(B2)
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FIG. 13. The basic gedmeu'y for calculation of R;.

When R, is summed (integrated) over all L states, then
JRedLdL'=1 and

. 1 ,
fRi'dL’=ff 8[rp, sin —L]d(cos 8)=L/(mr*p,r).
-1
(B3)

1. Form factor for EL—E'L’ transitions
Evaluation of Ry for fixed L and L’ is facilitated by not-
ing, from Fig. 13, that

cos §=cos 6, cos +sin 6, sin Hcos @

in terms of (6, ) and the fixed angle 8,, between p| and
P2-
On changing the ¢ variable to  in Eq. (B1), the ¢ inte-
gral, for @ fixed, is
2w o+ 0[1
f 5(rpzsin3—L')d¢=2j| $™'(5.6.6,)
V] §—

812 .
"X &(rp, sin §—L")d(cos §).

The factor 2 originates from the fact that, as ¢=0—m
—2m, the range (|6— 6y3],6+ 6,3) in 8 is covered twice.
The function

S=sin §,,sin fsin @
is expressed as a function of d and @ variables by
$%(8.6;6,5) =sin?8sin*G— (cos 65— cos 8 cos §)2.

Subsequent integrations are facilitated by noting that

SF()=3 Z )

, F(x,)=0.
= Fal

Hence

B 2
(sin 3)5(rpzsin3-b')=[ = ,‘,]2 &6-6,),

mpyrér’ |i=1
where the roots, 8, <7/2 and §,= m— §,, are given by

sin@,=L'/rp;, cosf;=—cosb,.
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The & integral therefore reduces to

mpzrzr"]
x($:'(8,.0)+S2'(6,.0)].

fo' Srpysind-L']do=

where
$(8,.8)=sin*6sin’ , - (cos 8, = cos fcos §;)°.
Upon 6 integration,

2L’

ﬁp_z"'f"

4R AP . P2ir)=

f_'l[s:‘w..o)

+57%(8,,0))8(rp, sin §— L) d(cos 6)

2LL’

4.5

mip,pyrirr

+5-18,.6,)+57'(8,.6))

[524(8,.6))

+S:l(3|.02)]'

where sin 6,=sin &=L, /rpj.and cos &=—cos §,. From
these relations and from the above definitions of the S, func-
tions, then

S_(8,.6,)=5.(8,.6,),

S-(8,,8,)=5.(8,.6),
with the result that the radial integral is
4LL’

ATRAP P2 =
mip partrr

][S:I(alvol;olz)

+52Y(8,,8,:61).

Upon p, integration in Eq. (B2)

Ris(pl:r)=f Ri(py P2:r) 8(p2 = (P1+ @1)).dPss
S. are evaluated using the substitutions
sin@=L/rp,, cos@=mrip,,
sing=L'Irpy, cosG=mr'ip,,
and

cos 6,,=(p}+p3=-q*)2p P2

to give, simply,

2p,p2S=(8,.601)= (g7 -A2)(BL - %),
expressed in terms of the momentum-change limits

Al=m¥(r=r)+(L-L")r?
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and

Bl=m(r=r )+ (L+L")P,

The integral R,(p,:r) is then

’

. SLL
41rRi,(m;r)=[———

mzr4r-'r-,][0i?(r-q)+G-.?(r.q)_]. (B4)

where

1

Gi(ra)= , _
= A - )

Since '
mriR=E=V(r)-L*2mr?

holds for the initial and final states, the §, A, and B functions,
and hence integral (B1), are all independent of p;. The tran-
sition integral (B2) is then

A= f:avéu(r.q>n(r.q>r=drl (85)
where the only p integral is
H("Q)=f S(H(r,p)—E)é(H(r,p+q)—E')dp.
Hence

MN(r.q)=27 | p*dp 8pr2m+ V()= E]

r I
+1 .
\'f N pgcos 8/m—E'—E ~q*2m] i(cos 6),
_l ’

where 6 is the angle between p and q. There is only one 6
root provided that

p=po=miq|E—E' +q*l2m].
The p integrations therefore yield

27m?

(r.q)= 6(r.q),

where © is the step function having a value 1 if V(r)<E
- p(z,IZm is satisfied, and zero otherwise. The final expres-
sion for the classical transition probability density (13) for
E.L—E’',L' impulsive transitions is therefore

1 2mm?

2mh)? 4

P(E,L.E'.L';Q)=

X j 4mR{r.q)0(r,q) ridr,
(B6)

where R, is given by Eq. (B4). Hence
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P(E.L:E'\L":q)=

W6wLL’ [ drirt .
f [Gi(r.g)

(2mh) g rr’
+Gi(r.q)]0(r.q).

For hydrogenic systems, the condition V(r)<E -pé/Zm is
satisfied for any g and all r within the radial region R (cf.
Fig. 3). Thus the step function © is always unity.

The probability of n./—n’,I’ transitions due to an impul-
sive momentum change is then

(hva)(h Vg )R
X P(E, (I+ U2)h:E, (I' + 112):q).

Puni(g)=

o

2. Form factor for EL—E’ transitions

On using Eq. (B3) in Eq. (B6) the probability density for
E.L—E' transitions is

L =
P(E.L;E’;q)=——j (vr)~'O(r.q)dr,
mhiqJo

where v(r) is the speed along the initial trajectory. Since
p¥=2m[E—V(r)], integration over r may be replaced by p
integration and dr/v=dp/V'(r) so that

L ® _
P(E.L;E’:q)=-—3—z f lrV'(rpl ™! dp,
mhq T Jro
where r; is the root of p*=2m[E~-V(r)]. In terms of the
momentum distribution (AS), then

mL (=
P(E.L.E"; =——f E.L:p)4wpdp,
( q) eha pop( p)4mpdp

which for bound n! states is in agreement with previous re-
sults [8.16.6).

The classical form factor for nl—n’ transitions in hydro-
genic systems is, in atomic units,

2(21+1)

Pul.n'(q)= —__,3_
wan P roia

L(1+n%p?)\?]"?
y 1_(__(__'12) o,
2n%p

where the integration limits are given by two conditions: the
integrand is real and p®>po=|q*+ 1/n'2=1/n?|12q.

P n
- (1+,.=p2)-

3. Form factor for E—~E' transitions

Using Eq. (B6) with Ri=1, the probability density for
E—E’' transitions is

2mm? (4 3)
—_——rl ],
q(2mh)*\3 " *

where 7, is the largest r which satisfy the condition

P(E.E'.q)=
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m -
p(r)=2m[E- V(r)]?po=-q-l5' —-E-q*I2m|.

This probability density is exact for all V(r) and has a
simple physical interpretation. The transition probability is
gwcn by VAp/(2mh)3, whxch is the number of states in the

‘‘reaction’’ volume V= 4/31rr multiplied by the volume of
momentum space Ap consxstcnt with energy conservation.
The initial- final-state energy conservation equations a~ E
=p}2m+V(r) and E'=E+q-pim+q°/2m, respectively.
Then

27
Ap= j dp=2nwp
®=0

where the z axis is along q.
The classical form factor for n—n’ transitions is

P (q)=(hv ) hv,)P(E, E,i iq).
For Coulomb attraction V(r)= —Ze?/r, then
r.(q)=8(Ze*m)q*(q*—4m(E+ E'Yg*+4m¥E-E')}]!

so that the transition probability, with the substitution g
= Q(Z%/a,) now becomes

9

P, (Q)=——Q?
T 3m(nn' )

+( 1 1 )2 -3
n? n'? :

APPENDIX C: CALCULATIONS OF QUANTAL
FORM FACTORS

Q‘+2(—+%)Q2
n

The quantal transition probability (5) for the hydrogen
atom is in general a rational function of the momentum

transfer q because Eq. (5) with W(r)=R,(r)Y;(r) can be
decomposed as

1+

Fiare(@)=(21+1)(20" +1) IE If»{g(q) (2L+1)
Laji=l'| n

L 1 1"?
10 0 o

where {---} is the Wigner 3 symbol, and anl (q) is the
a'l'

radial integral:

fai(a)= f:R..(rm,..u(r)jL(qr) rdr,  (CD)

where j, is the modified Bessel function. Because the radial
wave function R,; has the simple structure e~"" ' Q(r),
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where Q is a polynomial of order n—{—1, integral (Cl)
contains only terms with the form

lgi(aq)= fo e” ™ r*ju(gr)dr,

where a is 1/n+1/n" and k is an integer number (k=1I+1’
+2,....n+n’) greater than L. This integral is the following
rational function in q:

gttt (L+k)!
el =TNEL-DT (s g))

—t - —+=, Lt

< F k—L k=L 1 3 ¢
Ll 2 2 2 2" 2/’

since the hypergeometric function ;F is a polynomial when
either the first or second argument is an integer. This proves
that integral (C1), and hence the quantal form factor (14), are
rational function in q. It also provides the practical procedure
to calculate the quantal probability (14) in an analytical
form.

The quantal transition probability (21) can be written in
terms of the density matrix element, pu(r.r’)

= 2l.m :lm(r) wnlm(r, )v as

P,‘"l(q)=f jdl‘dr'ei"""p,,(r.r')P:;(l'.l").

The density p,, is the residue of the Coulomb Green's func-
tion [17] and can be calculated from

P

—

n
mnagy X~

po(r.r')= lim (E-E,)Geg(r,r')=
E—E,

in the spatial variables (x,y) given by
y=Zlag(r+r'—p)

x=2Zlag(r+r'+p),

where p=|r—r'|. The function P, has a simple structure.
Because

J 4
P,= ( d—x. —b—y-)[M,,_[Q(X/")Mn.lfz(y/n)]'

where M is Whittaker’s function, then P, is simply
exp{ —(x+y)2n]X polynomial in x and y. Thus

e-(x*y)on
Pn(x.y)=— —z—n;—[Zn(x-y)f.(X)g.(X)

+(n=Dxy(fo(x)8a(y) = galx)fa(¥ )],

PRA 60

where the polynomials

fulx)y= Fi(1=n2x/n), gu(x)=,F(2-n3x/n)

are given by the degenerate hypergeometric function |F,
where the first argument is a negative integer. Finaily, P,
is the integral in x, y variables: ‘

1
24nn’

Poa(q)= fo L dx dy sin(q(x=2)12)

x(x2+4xy+y2)P,,(x.y)P,,,(x.y)/(x—y).
The observation that P,(x,x)=0, means that x—y is a divi-
sor for P,(x,y). On writing sin in exponential form, the
integral contains only primitive terms of the form

x™(f or g)(x)e”*=*, with various positive integer powers
m and a.=( l/‘r~|+ l/n’ £iq)72. The elementary integrals

an—l)"m!( n )"‘
an a\an—1

X 3F(n+1,1-m2l/an)

jax"f,,(x)e"”dx=
0

and

an al\an—1

® an—1\"m! n \"
Jremsore=ae=( ) 5]

X ,F\(n+.2-mJ3,1/an)

are rational functions in a which is linear in g. The form
factor P,, is therefore a rational function of g. The proce-
dure described is remarkably efficient since it reduces the
multiple integrations to a finite number of symbolic opera-
tions by (a) recognizing the primitive terms, and (b) replac-
ing them with the appropriate elementary integrals. Based on
this procedure, the results of calculations for the transition -
probabilities for n’ =1,2,3,4,5, and 6 and arbitrary n are pre-
sented in Table I. This illustrates the power of the method.
The form factors for transitions from X, L, and M shells were
obtained by Bethe and Walske [18]. The form factors for
transitions to continuum states with wave number k are ob-
tained by analytical continuation replacing n with i/k. The
dipole oscillator strengths for n—n' transitions,

Pnu’(q)
7

fnn' =2AEl.u.lim
=0 4

can be readily deduced from the results presented in Table [.
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The quantal impulse cross section is derived in a novel form appropriate for direct classical corre-
spondence. The classical impulse cross section is then uniquely defined and yields the first general
classical expression for n€ — n'€’ collisional transitions. The derived cross sections satisfy the optical
theorem and detailed balance. Direct connection with the classical binary encounter approximation is
also firmly established. The unified method introduced is general in its application to various collision '
and recombination processes and enables new directions of enquiry to be pursued quite succinctly.

PACS numbers: 03.65.Sq, 31.15.Gy, 32.80.Cy, 34.60.+2

The quantal impulse approximation (QIA) is an estab-
lished and productive cornerstone in general scattering
theory {1). It is based on the assumption that an inelastic
collision of incident particle i with a two-particle sub-
system (2,3) results from each binary (i — j) scattering
under the two-body interaction V;; alone, leaving the
“spectator” particle k unaffected. The internal interaction
Vi between the “active” prrticle j and the spectator
particle k is ignored duri. ;- the (i — j) collision except
insofar as it generates a A*-ibution p(pji)dpjx over the
relative momentum p  of particles j and k. This approach
has been invaluable in nuclear physics for high-energy
neutron scattering by complex nuclei {1] and in atomic
physics for atom-Rydberg atom collisions at thermal
energies [2-7] and for electron (ion)-atom and atom-
atom collisions [8,9] at high energies. It is also valuable,
for example, in the study of three-body recombination,
Li + Li + Li — Li; + Li which limits the density and
lifetimes of Bose-Einstein condensates at ultralow energy,
and e* + p + et — H + e* for the formation of
antihydrogen.

A classical binary-encounter approximation (BEA) has
also been formulated for Rydberg collisions {3] and for
high-energy collisional ionization (8-10]. Although QlA
and BEA are conceptually connected, the formal interre-
lationship between them is quite complex and has never
been firmly established. Previous studies [6.8,11] have de-
pended on fairly complicated theoretical analysis in an ef-
fort to reduce QIA to BEA.

In this Letter, the quantal impulse approximation is pre-
sented in a new form which provides quite naturally “the
royal road” to classical correspondence. A classical im-
pulse approximation can then be uniquely defined. The
novel expression yields the first general classical cross sec-
tion for n€ — n'€’ transitions and the standard result for
n€ — n' transitions. The derived cross sections satisfy
the optical theorem (which implies probability conserva-
tion) and detailed balance. The method ‘introduced then
permits BEA formulas to be derived quite succinctly and
in a unified way. There is substantial renewed [7,10-15]
interest in the power of classical dynamics in almost all
fields of modern physics, attributed to the desire [15] to ob-
tain a more thorough understanding of the classical-quantal
correspondence. This present development provides a pro-
found and important quantal-classical connection in colli-
sion physics. The new formulation also provides a natural
origin for development of new semiclassical methods. _

The transition T-matrix for the free-free (pij — Ppi;)
scattering under the two-particle (i — j) potential V;
alone is
Tij(pij» pij) = (exp(ipj; - rij/ B) IVij(®i)l W (pij. vij))e,, .
where W(pij,r;;) is the exact wave function for i — j
scattering in the (i — j) center-of-mass frame CM(i, j).
The momentum transferred from i to j is

QJapi-P;'P;-pJ"PU'pa{j'
where the momentum of particle i is p; in the fixed
CM(ijk) frame of all three particles, and is p;; in the

0031-9007/00/85(1)/1(5)$15.00 © 2000 The American Physical Society 1
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CM(i, j) frame. The primed (') and unprimed momenta
denote postcollision and precollision values.

The quantal impulse T-matrix for i — (/j,k) scattering
decomposes as the sum T;; = ,-(}2) + T,-(}s) of binary
collision matrices Tf}'), with j = 2 or 3. Each T,-(}” in the
momentum-space representation (MS) is the overlap
[1.6,7).

(ij
MST:'/])-’:A:'.P,') = (ds(pjx + Qi)
X |Ti1(pijo P,{j)|¢f_i(pjk)>p,, . (D

of the free-free T;; matrix with the initial and final mo-
mentum wave functions

o(pje) = (2775)—3/27*41’(‘!7&)CXP(‘ink “ rjx/R)drjk,

for the (j, k) subsystem.  The momentum transferred to
j — k relative motion is

- M
Pji = M i+ M
where pjy is the relative momentum in the initial CM(j, k)

frame. After the (i — j) collision, CM(j, k) moves with
the residual momentum M;q;/(M; + M;). The bi-

nary T,-‘}j ) matrix has also the configuration space (CS)

representation
ST (pi.pl) = (explip} - ri/Ms(xje)
X Vi) Pt tides, - (2

The impulse approximation {6] for the initial total system
wave function in (2) is

qjr = P}t - q;,

W = Wi, (pii i, Tjk)
= (2.i) 72 f ¢i(Pje)P(Pij. P 4ijs Fr) APk »

where the active and spectator particles are j and k, re-
spectively. The free-free (i — j) scattering wave function
is W(pij. rij) in the CM(i, j) frame and is
®(pij, P Tijo Te) = explipe - re/B)¥(pij. rij)

in the fixed CM(ijk) frame. With the aid of the
(tji,r;)-(r;j. rg) transformation equations for the inte-
gration variables in Eq. (2), of the identity p; - i +
Pji " Tjt ®pe - T + Py - rij, and of Y(rj) =
QmhR)"¥? [ p(pj)explips - x/RK)dpjr, it can be
shown that the momentum-space and configuration-space
representations (1) and (2) of Ty are equivalent.

The quantal differential cross section is

doif - U,’(L 2M;

2
vif 1 2PNV (o D)
dp'l v" 41,_ hz ) ITlf(php[)' ’ (3)

where M; = M;(M; + M:)/(M; + M; + M,) is the re-
duced massof the i — (j + k) collision system and p,-') -

" R 4
M;v;  are the momenta of i with v; measured with re-

spect to initial CM( j, k). Although QIA assumes that each
scattering is a separate event, the cross section (3) involves

(W2) i : L
ITyl2 = 1Ty + T2 which exhibits interference be-

tween the two-body (i — j) scattering amplitudes. For
three identical particles |T;/|* = 4|T}}J 2. The classical
representation of Eq. (3), however, involves only |T;|* =

TSR + |12 which is valid for binary and indepen-
dent scattering (as, e.g., in Rydberg collisions).
The key idea of this paper is to.find a phase-space rep-

resentation for IT.-(,'")IZ. This is accomplished by writing
(‘ .) ( ) { ‘)‘
T )l = CTPHET @

as the product of the momentum-space (1) and the con-
figuration-space (2) representations. It can be shown that
Eq. (4) with Egs. (1) and (2) for (i = J) scattering alone
reduces to

175 @i = @why [ dp [ drpjiep + 0
© X Ty(pi, pipPei(e.p) &)

where (rj, Pjr.q i) are now denoted by (r,p.,q). The
internal (j — k) quantal distribution in phase space is

p(r.p) = @mR) ¥2y(E)e P ¢ (p),  (6)

in agreement with that [12] previously defined. * The
standard probability densities p(r) = [p(r,p)dp =
[U(r)2 = R2(r)Yem(®)? in conﬁgluration space and
p(p) = [ p(r.p)dr = |$(P)1? = d1c(P)IYem(B)* in
momentum space are recovered directly from (6), which
is the standard ordered version [12] of the Wigner distri-
bution [16). In terms of the phase-space distributions for
the initial and final internal j — k states, the differential
cross section (3), with Eq. (5) for independent scattering,
separates into (i-2) and (i-3) components, each given by

d af}j)

U: M.’ 2 3 ‘
ap! --u—,(-;{-;) (Qmh) fa'pfdr
X {pp(r.p + Q)| fij(pij pi)pilr. P},
@)

where the (i — j) and i — (j + k) reduced masses are
M;; and M;, respectively. The scattering amplitude,
£ii(pij.pij) = fij[g(p).q;], for free-free (i — j) colli-
sions is a general function of momentum change ¢; and
of the i — j relative velocity g = v; — v;. It therefore
depends implicitly via g on the j — k relative momentum
p. Thus, (5) and (7) are the free-free transition probabili-
ties/differential cross sections, respectively, averaged over
the initial and final phase space distributions.

The above novel expression (7) for the quantal impulse
cross section (3) has the phase-space representation ap-
propriate for direct classical correspondence, obtained by
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replacing the quantal densities p; ; of (6) by the corre-
sponding classical phase-space distributions [12]:

p(E.L:r.p)drdp = {6(p/2m + V(r) — E)dE}

drdp
X - Laev
{8(Ir x p| — L)dL} IR
(8)
for a (j — k) symmetric interaction V(r). The

internal Hamiltonian H(r.p) = p*/2m + V(r) of the
j — k subsystem (with relative momentum pjx = p
and reduced mass M = m) and the internal angnlu
momentum L(r,p) = r X p are conserved quantities in
phase space. The distribution (8) holds also for bound
states (n, ) but with 4E and dL replaced {12] by hv, and
k, respectively, where the frequency (or inverse period)
for bounded radial motion is vny = ‘r,,',l. The distribution
(8) is normalized to [ p§¢drdp = (2¢ + 1) states over
all of phase space.

(a) n€ — n'€' transitions.—The angular #(6,, ¢/) in-
tegration, resulting from Eq. (8) in Eq. (7), involves the
angular momentum overlap integral,

-3 1
Ri(r.q) = m—f 8[rpsing, — L}d(cosé,)
4 -1
2w
Xf 8{rp'siné, = L']1do,. 9)
0

where cosf, = p - # and cos@, = p’ - P with p along
the Z axis and with p’ = p + q fixed in the XZ plane.
Integration via the techniques outlined in [12] yields

. K3
Ri(r.q)dEdLE'dL' = — pre(r)pae(r)

x [G(r.q) + Giz(r.q)].
(10

I . fq' 4 f Prenetraydr] L fxi(m)
Un e i) = —3 ; : en'tl r, ry— .
re®) = 4z T | VN VT e 16 - 82 (83 - 812

The classical radial density and the classical radial proba-
bility for continuum states of energy £ are

peelr) = f ple(r.p)dp = 4w L dEdL/[QmR)r*r],

and 4mpg,ridr = (2LdL/R*)(2dEd:t/h), respectively.
The bound state distribution is pne = [(2€ +
1)/47])(2r/7ne). Each of the contributions,

G3(r.q) =[(g® - AL)BL - ¢)]""2. (D

must be real, so that ¢ must then lie within the classically
accessible range given by

AL(r) = m¥(7 = ) + (L — L'*/r* < ¢* = BL(r)
=mi(r = #)} + (L + L)/r%

For a given momentum transfer g, the r integration pro-
ceeds over the various [12) radial ranges R(g) within
which the G;? are real. The initial and final radial speeds
r and r’ determined by

%m;(l‘).z = g0 — v(r) - L(/)Z/zmrl
are functions only of r for given initial n/ and final n'l’
states. Hence, Gi7(r, q) and the angular integral Rif(r.q)

depend only on r and q and not on p. The remaining p
integration in Eq. (7) therefore involves only the overlap,

[ step) - EN Sl 0
x 8[H(r,p + q) = E']dp.

of the i — j free-free differential cross section with the
initial and final energy distributions at a fixed r. When
integrated [17] and combined with the angular momentum
overlap integral (9), the cross section for-né — n'¢’ tran-

"] sitions resulting from (i — j) collisiqns is

| fi;(8. 9,)1%dg?

(12)

The classical probability that the i — j impulsive transition transfers momentum g to the j — k system with internal

separation r in the interval r,r + dr is

2 3
Patwe(r.q)dr = (3”7""—)[47&,% dE dLdE'dL') = @ pierIpfeln)r I- (G (r.) + Gilr.a)10(r.9).

The classical limits to the g2 integral in Eq. (12) for fixed |

(r.q) are
gi(r.q) = v} + U}(’) - 2uvj(r)
x cos[8°(r.q) = 6i(g)],

where, for given transfers £ = E' — E and q in energy
and momentum, the angles that p; and p each make with
q are, respectively, determined by

(13)

cosi(q, E) = QM E + q9)/2pig;.
cosé*(q, E) = 2mE - ¢*)/2pq.,

in accord with energy and momentum conservation,
implicit in the & function and impulse conditions.
Since |cosf| =1, the (j.k) relative momentum
p > po = [2mE - ¢*l/2q] so that the step func-
tion © in Pnene has value 1 for p(r) = po and zero
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otherwise. Since |cos;| = 1, then g- = |p; — p{l =  quantal” probabilities may now be defined by replacing
g; S pi + pi = q+. as expected. either or both of the classical radial densities p, in (13)
The integrated probability for the impulsive (n€ — n’¢’) = by their f-independent quantal equivalents,

transition, q .
PRe(r) =D [Unem(®)? = (26 + DRE(r)/47 .

for both bound n¢ and continuum e¢ states.
{b) n€ — n' transitions.—On integrating Eq. (9) over
all final angular momenta L', then

Pnl.n'l’(q) = /R Pnl.n’f’(r-q) dr, (14)

is simply the classical form factor as defined in Ref. [12].
Equation (12) therefore illustrates the interesting manner

in which Pn . becomes deconvoluted over r when ay ‘ 1 ] dE dL
the general (i — j) scattering cross section o(g.q;) Ri dEdL = [3[ -1 8lrpsiné, ~ L]d(cosh,) @mh)
depends additionally on the (i — j) rclative speed g. For ' '

g-independent o, (12) reduces to the standard impulse = ple(r). (15

result {1,6] involving the full form factor (14). 4mmp

Since the integration limits and P; ; are symmetrical in  The classical probability for the n¢ — (E',E' + dE') im-
i and f, the basic cfOss section (12) satisfies the detailed  pulsive transitions in the (j, k) subsystem with internal
balance relation pfo',.e',,:(,(p,-) = p?a’,.,_,,,g(p{). “Semi- momenta in the'interval (p, p + dp) is then

|

27wm? N mdE'
Pacs(p.idp = (220 ) tamRiyriar dE dL dE') = = empi(ppPap),

since 47 pne(p)pidp ™ 41 pae(r)ridr under the energy constraint p?(r) = 2m[E — V(r)] for the initial classical dis-
tribution. Note that m/q = M;/q;. The classical impulse cross section for n¢ — (E',E' + dE') transitions is therefore

2
(i) 2 q. = 1 s+(p.q) If:j(g.qj)lzdgz
Tree(Pi) = —3 3 ~dq-f PuC.E’(p-q)dP[_f Tt (16)
¢.e\Pi M,-z,-v,'z . q;49; pol@) T Jetpa [(g2 - g2) (g} - gd)]:

The cross section for né — n' transitions is obtained by substituting v, for dE’ in Paer. By adopting the quantal
distribution (2¢ + l)¢3¢( p) for 4mpf(p), then Eq. (16) provides semiquantal cross sections {6]. .

(c) Relationship with Optical Theorem and Classical Binary Encounter Theory. — Integration of Eq. (16) over all pos-
sible final E’ states is facilitated by recognizing that the required integral,

fﬁ 2g/q;dE' _ ff' dE
e g2 - g0t - 2 Je UE - E)(E - D

is simply 7. The classical limits Z«(q;: 7 - V)i vi, vj) to I. gular me.aentum changes in n€ - n'€' collisional transi-
the energy transfer E, for the prescribed fixed arguments,  tions is mzde simply by replacing [ pne(p)dp in (17) by
need not then be specified. The cross section for all elastic  the integral f pne(p.r) dp dr over phase space. See also

and inelastic transitions is then Refs. [13,14].
(,.j,( ) m Z + * d In summary, the quantal impulse cross section (3)
Tne (Vi , Tt (vi) ] one.(vi)de has been presented in a valuable new form (7) which is

: the appropriate representation for direct classical corre-
- _l_ [ ple(p)dp f {g i‘ﬂ} dpl.  An spondence. The classical impulse cross section has been

viJ " dpi; )l Y defined by (7) with (8) which yields, in quite a succinct

i.e., the rate v;c ¢ for transitions to all states is therefore fashion, the first general expression (12) for the classical
the rate for all i — j binary encounters, averaged over the  impulse cross section for né — n’€¢’ and n€ — €’ elec-
initial momentum function for j in the field of k. Expres-  tronic transitions. The cross section satisfies the optical
sion (17) simply restates the optical theorem, which, when  theorem and detailed balance. Direct connection with the
applied to (1), provides (17) directly. classical binary encounter approximation (17) has been
Expression (17) is the original basis [8] of the stan-  established and the derived n€ — n’ and n€ — € cross
dard classical binary-encounter approximation (BEA) for  sections (16) reproduce the standard BEA cross sections
energy-changing collisions, where the ﬁ,{,- region of in-  [3,7). The present unified method can also fumish
tegration is constrained by the required energy change.  semiclassical impulse cross sections, obtained simply
Previous BEA semiquantal results [3,6] for n€ — n’ col- by adopting semiclassical phase-space distributions (at '
lisional transitions can then be shown [17] to be identical  present, unknown) within Eq. (7). Although applied
with (16). Generalization [17} of BEA to cover the an-  here t0 a time-independent formulation of collisional
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electronic transitions in an atom, the prescribed method
is general in that it can be applied, where appropriate,
1o atom-molecule rovibrational collisions, to three-body
recombination, and to explicit time-dependent problems
as laser-pulse excitation [18]. The method presented also
helps elucidate. quite succinctly, the role played by the
quantal-classical correspondence in collision dynamics.
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- Abstract. A new exact solution of the time-dependent quantal equation is obtained for the full
array of angular momentum mixing transitions a¢ —» a¢’ in atomic hydrogen induced by collisions
with charged particles at ultralow energies. Based on this new solution, efficient numerical
procedures are devised. 1t is proven that the present (fixed-frame) solution is equivalent to the
rotating-frame approach described by Kazansky and Ostrovsky (Kazansky A K and Ostrovsky VN
1996 Phys. Rev. Lent. T7 3094) and that it overcomes the difficulties therein. Analytic expressions
for low quanrum numbers n are presented. Numerical results for the transition ammay with n = 28

are reported.

Stark mixing occurs when the electron of a Rydberg atom (in a state with principal quantum
number n) changes its angular momentum ¢, without changing its energy, as a result of a
collision, at large impact parameter b, with a slow massive particle of charge Z,e moving with
velocity v. It is important in many areas of atomic physics, as in the Auger (or autoionization)
process which follows the collision between ions and atoms (Miraglia and Macek 1990), in
ZEKE spectroscopy (Merkt and Zare 1994), in astrophysics (e.g. Percival 1983), in recent
efforts (Mensh’ikov and Fedichev 1995) to produce anti-hydrogen at 4 K and for general
three-body recombination (Flannery and Vrinceanu 1998) at ultralow energies. The first stage
in ultralow energy electron-ion recombination (Flannery and Vrinceanu 1998) at temperature
T. is a very rapid collisional capture into high Rydberg states with high angular momentum ¢
and large radiative lifetimes at a rate proportional to T,”*3. Thus the £-mixing is an essential
step in producing the low-angular-momentum states required to radiatively decay at a relatively
high rate to low levels, thereby stabilizing the recombination.

On considering the Rydberg atom in a frame rotating with the internuclear axis, the Stark
mixing problem can be reduced to the problem of the Rydberg atom in mixed staric fields: .
electric, provided by the projectile ion, and magnetic, produced by the non-inertial (Coriolis)
forces. In this way, the well known equations, in both classical (Bon 1960) and quantum
(Demkov er al 1970) mechanics, for the problem of interaction between weak fields and an
atom, can be adopted to provide, in principle, a solution for the Stark mixing problem. Both
quantal (Kazansky and Ostrovsky 1996a, b) and classical (Kazansky and Ostrovsky 1996b, ¢)
versions of this approach have succeeded only for £ = 0 to higher angular momentum ¢’
transitions, appropriate to the experiments described in a paper by Sun and MacAdam (1993).

This letter presents a new exact solution for the Stark mixing process, valid for transitions
nt — nt' between any states within the shell of energy E,. The present theory in the
fixed-frame representation is shown to be formally equivalent to the rotating-frame approach .
(Kazansky and Ostrovski 1996a, b), but, in contrast to it, the full array of transition amplitudes
can be obtained at once by efficient numerical procedures. Results for transitions within the

0953-4075/00/200721+08830.00 © 2000 IOP Publishing Ltd L721
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n = 28 energy shell are presented. Analytical formulae for the transition probabilities are
possible for low n.

The trajectory of the projectile, initially moving along the positive Z direction, is assumed
o be confined in the YOZ plane. In addition to the Hamiltonian Ho = p?/2m, — €?/r. the
angular momentum L = r x p of the unperturbed Rydberg electron and the Runge-Lenz (or
eccentricity) vector,

A= [pzr-(p-r)p-meezf-]/m- M

directed toward the pericentre and normalized to angular momentum units, are also conserved.
Here p, = v—2m,E,. These quantities define the dynamic §O(4) symmetry of the hydrogen
atom. Because the SO(4) group is isomorphic with the direct product SO(3) @ SO(3) of two
rotation groups, a special decomposition, L = M +N and A = M — N, permits the dynamics
of the hydrogen atom to be separated into two decoupled motions. The generators M and N
act independently as angular momenta and are also conserved quantities for the unperturbed
Rydberg atom. -

The orbital electron interacts with the time-dependent electric field £(r) generated by the
passing projectile of charge Z 1€2. In the weak-field approximation, this field is constant over
the spatial extension of the atom. In this approximation, which is the same as the dipole
approximation, the interaction potential V = er - Eis

V(r,R) = _Zlez%s,_" = g;:—;-z-% r= %%(ysin¢ +zcosP) (2)
where R is the internuclear vector and & is the angle between R and the OZ-axis. The
angular momentum of relative motion L = uR*® = puvb, where u is the reduced mass of
the projectile-target system, remains conserved since L > L, 50 Ly and L are effectively
decoupled. A classical trajectory for the relative motion is then valid.

If the projectile moves very slowly, the orbital electron adjusts itself adiabatically to the
ion perturbation and no energetic transitions occur. In this limit, Pauli’s replacement rule
r = {r) = —=3A/2p, is valid within the n energy shell (see Vrinceanu and Flannery (2000)
for a detailed explanation). The perturbing potential (2) can then be written in terms of the
components Az and Aj as

V(ia) = —U%(Az sin ® + A3 cos )

where the Stark parameter @ = 3Z,a,va /2bv and a, and v, are the average electron-orbit
radius and velocity. ’
The Schridinger equation for the time evolution operator U (1, o) is

1
lfls;' =(Ho+ VYU 3)

where Hp is the free atom Hamiltonian and V is the interaction potential (2). The position
operator and hence the perturbation potential (2) commute with the unperturbed Hamiltonian,
as one can prove directly from the matrix elements of the commutator [r, Hy) between any
states within the energy E, shell. The potential in the interaction representation

Y = ity gttt

is then identical with the potential in the Schridinger representation (V; = V). The equation
to be solved, in the interaction representation, is

aU

g

do® .
T = -a?(Az sin® + A3 cos O)U; : . (4)
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where U(t. 1) = exp(iHot /R)U exp(—iHoto/h). Because the set of operators (L, Az, A3} is
closed under the commutation operation and generates the rotation group SO (3). the solution
of equation (4) is obtained in terms of elements of this group as

Uit 1p) = €L exp[—i(® — do) (L) — aAs)/hle™ b/, (5)

Impact angles & and ®q correspond to the position of the projectile at times ¢ and f,
respectively. The above solution (5) can be easily verified with the aid of the relations

edMAL o= AYN [ cos A + Aysind
eitA/h ge~ AR = A cosd — Lysink
erLi/h g e= i/ — 41 cosA + Agsind

which are derived from the basic identity

2
e*ABe*A = B+%[A‘B]+%[A‘[A‘B]]+... ’ (6)

and the commutation relations [L, Az] = ihAs, [L1, A3) = —ikA; and [A2, A3] = iAL,.
The initial condition U (¢, fo) = 1 is automatically satisfied. Note, in the limit as « — 0, that
Uto, t) = 1 for all time and no (/, m) transitions can then occur.

The transition amplitude for a Stark mixing process is

agy = (nB|Uj(00, =00)Ina) v ™M

where the initial unperturbed state |na), att = 00, evolves to the final states |n8), at¢ = 00.
Since a and B label the states within the same energy shell, the superscript # can be omitted
and all dynamics is restricted to the energy shell defined by quantum number . The full array
of transition amplitudes is given by equation (5) in (7) and is feasible and efficient for practical
numerical applications since it requires only matrix operations.

The core of solution (5) is the exponential of the operator L; — @Aj. By using basic
commutator algebra, Pauli’s replacement and equation (6), this operator can be diagonalized
as

e'i"’/"(Ll - aA;)ei"’" =yl
where ¢ = (2p,/3)arctana and y = V1 + a2. The solution (5) has therefore the alternative

form
Ui(t, 1) = ei°’-|/le-inﬂe-i)‘(°-°o)l-|/heinfﬁe-i%l-lﬂ ®)

which illustrates quite nicely how the action of the slow distant encounter charged projectile
incident along the negative Z-axis can be decomposed into successive rotations about the X-
axis and alternating impulsive momentum transfers +q(a) along the Y -axis. In the limit of
zero impulse g, (8) is unitary and no transitions occur. In the limit of small Stark parameter a
the above solution (8), for undeflected collisions A = (® — dg) = —, reduces to

U = e 30?4 O(a?)
in agreement with the impulsive result (Vrinceanu and Flannery 2000).

It is however interesting to note that by introducing the Pauli replacement directly in the
potential (2) and by writing the Runge-Lenz vectoras A = M — N, the potential decomposes
as

V= VM + VN

where Vi = —a (M3 sin ® + M3 cos ®)d and Vv = a(Nzsin ® + N3 cos d)d. Because the
commutators [M;, N;], [Mi, Ho] and [N;, Ho] = 0 (for any i, j = 1,2, 3 combination), the
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Table 1. The four bases useful for describing the quantal states of the hydrogen atom.

Quantum Complete set of
Basis numbers commuting observables Origin

Orbital  intm)o  Ho. L. L3 Standard for spherical coordinates: describes correctly the states
of the field-free atom

Parabolic inynam)p Hi Ha Ls Separation of Hamiltonian # = H; + H, in parabolic coordinates.
$=r+:.n=r-z.unpsy/x:n =a +ny+mi+l

Stark ingm)s  Ho. A3. L3 Parabolic basis; describes the Stark states for small electric
field £. when the interaction —e£ is diagonal; ¢ = ay — a2

Algebraic jnuvia  Ho. M3 Ny The two rotation groups in which the dynamic symmetry group

50(4) = SO(3) ® SO(3) decomposes; the equivaient angular
momentum for both SO(3) representations is j = (n = 1)/2:
u=(m+q)/2andv=(m-q)/2

b

problem (3) becomes separable, in exactly the same way as the classical Stark mixing equations
can be decoupled (Vrinceanu and Flannery 2000). The time evolution operator then factorizes
as

U=UnUnUn )
where, of course, Uy, = exp(—iHy(t — to) /h) and both Uy and Ux are solutions of equations
ihaUpy /8t = VyUy and ihdUy/0t = Vy Uy, similar to equation (3). With the aid of the
group theoretical result (5). the solutions for the operators Uy and Uy are then

Uy = M exp(—i/h(® = ®o) (M) - aMy)]e M (10)

and
Uy = M/ exp[—i/h(® = Go)(N) +aN3)je™ &M, an

In calculating the amplitude (7), four interesting basis sets can be chosen for the one-
¢lectron hydrogen-like atom. Table t summarizes key properties of these bases. The orbital
basis is useful for describing the field-free atom, before and after the collision, whereas the
algebraic basis appears naturally asa basis where M3 and N are diagonal. The solution (9) has
the simplest expression in this algebraic basis. All four bases in table 1 span the n? degenerate
_energy.shell and can be equally adopted to characterize the hydrogen atom. The algebraic basis
spans a tensorial product of two spaces (Ju) ® Iv)) corresponding to spaces used for matrix
representation of the product SO(3) & SO(3). The two spaces have the same dimension
because M? = N? = L? + A2 = (n? — 1)h* and are associated with two angular momenta
with j = (n = 1)/2.

The transition amplitude between the two algebraic states is then the product a(uv).(uv) =
4,48y, of two amplitudes for M and N independent actions. Each factoris the matrix element
ofaj=(n-— 1)/2-dimensional representation of the rotations represented by equations (10)
and (11). For example, from (10), one obtains g, = F(a)yu, with :

F(a) = DY[-9. (1,0,0)]DY [y Ao, (% 0, -%)] DWWy, (1,0,0)}

where D¢, (1, n2, n3)] is the Wigner matrix representation for the rotation R(¢, n) with
angle ¢ about direction n (see Louck (1996) for the explicit expression). A® is the polar
angle & — &g swept out during the interaction. The transition probability in the space of N
is the element v'v of the matrix F(—a).

Calculation of the transition probability between orbital states requires the explicit unitary
transformation between the orbital and algebraic bases. This can be obtained by direct scalar
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products of the orbital and parabolic states for which explicit coordinate representations
are known. The result may be written in terms of hypergeometric functions (Tarter 1970).
However. an equivalent result is provided by the SO (4) = $O(3)® SO(3) isomorphism. The
orbital state, as a combination of two angular momentum states, is

J
iném) = Z CEM inuv)

nov==)

where the trar<“srmation matrix C®™ is given by the standard Clebsch-Gordan coefficients
(jujv|em;. The transition probability for the £ém — ¢'m’ transition then becomes

Arm tm = Z C‘(‘l"‘:l')c‘(‘l‘:u) Fu’u(a)Fv‘u(—a) (12)

uvp'v

which can-be expressed in matrix form as
aem tm = Trace[C€™ F(=a)C™7 FT (@)

where CT is the transpose of matrix C. This result (12) is in exact agreement with the solution
obtained by Kazansky and Ostrovsky (1996a, b), who used the rotating-frame approach.

The quantal development above is exquisite in that it follows exactly the same reasoning
within the exact classical mechanics solution (Vrinceanu and Flannery 2000). This resuit
exhibits the essential power of the SO (4) symmetry group for the energy shell of the hydrogen
atom. The common SO (4) symmetry therefore transcends the chosen formulation (classical
or quantal) and provides a classical-quantal correspondence at a level more fundamental than
Ehrenfest’s theorem and the Heisenberg correspondence.

In practice, the fourfold summation (12) and the use of the Wigner rotation matrices D
in F(a) are not very efficient and the difficulty of calculation increases dramatically with n.
Instead, the solution (5) provides a much simpler approach, because the matrix elements of the
argument in the exponential have simple expressions directly in the orbital basis. The array of
transitions is obtained at once, all within one matrix exponentiation of a band diagonal matrix
for which efficient algorithms are available (see ¢.g. Golub and Loan 1983).

When the projection of the initial and final angular momentum is not determined, the
transition probability is

' 1 4 [4
Prg(a) = 52—;—1 Z Z Iat'n‘.bnlz-

mu-lmu-l

The present theory is now applied in the following paragraphs for low n = 2 and 3,
when analytic results can be derived, and for n = 28, when accurate numerical results can
be obtained. A matrix representation for the operator Ly — aAj is required. Instead of the
spherical basis |¢m), which is difficult to use in this case, we define a new linear basis obtained
by mapping the (/, m) quantum numbers to a unique index k = 22 + ¢+ m+ 1, in such a way
that (0,0) — 1, (1, =1) = 2,(1,0) = 3, (1, 1) = 4, (2, =2) — 5 and so0 on. The inverse
mapping is given by £ = floor(Vk = 1) and m = k — £2 — ¢ — 1. The index k counts the
degeneracy of the energy shell, and runs from 1 to n?. The matrix element

L =J+m)(E=m+1)/2p 8w me1 +V(E=m)(L+m+1)/28000m met

of L, is non-zero only for AZ = 0 and Am = x|, which reflects the fact that the cylindrical
symmetry of the Rydberg atom is broken by the precession of L about the field of the projectile.
These m-changing transitions are however conditioned by the full structure of solution (5)
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Figure 1. Matrix representation of Ly — aAj forn = 3.

which shows that such transitions are only in evidence for non-zero a. The matrix element

em _ _ (= m)n? - 8) ,
(Al)zm = \/———(2t + l)(2l — l) st'l—lsm N

[(€+1)2 =mi)[nt - (L+ ”2]8 s
(2!+3)(2£+l) Uie1Om' . m
of the component A; = —(2/3n)z along the fixed Z-axis of quantization is non-zero for

Al = +1 and Am = O transitions. These dipole transitions only contribute for non-zero a.
The matrix L; — a@Aj has therefore the band diagonal structure, as illustrated in figure 1 for
the special case of n = 3. The transition amplitude for transition k — k' is the kk’ matrix
element of the exponential of the matrix —iA®(L | —aA3), sandwiched between the rotations
implied by (5). When a = 0, the dipole-forbidden transitions are not possible because the
transition matrix & exp —ia L, still has a band diagonal structure. When a increases, more
-" andmore off-diagonal elem: - become populated, resuiting in an increasing number of dipole-
-forbidden transitions witk: ... = ¢ — ¢ and Am = m’ — m. Efficient algorithms, using Padé
approximations, are availabie (Golub and Loan 1983) for matrix exponentiation. The whole
array of transition probabilities for all £ and ¢'is then obtained at once.
Analytical probabilities for £ — ¢’ transitions within the n = 2 shell are listed below:

PR = (;’l—‘) [1+a?cos(y AD))?

2’ . aAd
PP = (3-;‘-) (2 +a? +a?cos(y Ad)] sin? (Lz._)

PP = (#) [6 + 8a? + Sa* + da® cos(y AD) + a* cos(2y A®)).
The following transition probabilities for the n = 3 shell are also obtained:

PQY = (—’—) (3 - 2a? +a* + 8a? cos(y A®) + 2a* cos(2y AD)
>\
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Figure 2. Stark mixing transition probabilities for the 28¢ — 28¢' transition array, witha = 0.2
(left) and @ = 0.8 (right).

2 [+
P = (19—6-:-.-> (1 +a? cos(y AD)2[2 + & +a? cos(y Ad)] sin’ (yg )
324 yaAd
A _ 2,2 204
Py = (—45yl)[2+a +a‘cos(y Ad)}° sin ( 3 )
PP = (g},ﬁ ((6 + 30a* +4a® + 3a*) + 8a%(3 — 2a% + 2a*) cos(y A ®)
+2a*(11 = 2a? +a*) cos(2y A®) + 8a’ cos(3y Ad) + a’ cos(dy AD)]
2
PR = (%) [(20 + 34a? + 32a* + 8a®) +a?(26 + 200? + 9a*) cos(y A D)

+20%(4 + a?) cos2y AD) + a® cos(3y A®)] sin’ (y 2¢)

Py = (5.%’—8) [(90+;40¢x2 +318% + 196a° - 63a®)

+8a3(15 + 22 + l4a*) cos(v = ®) + 2a%(23 + 2207 + 13a*) cos2y A D)
+8a% cos(3y Ad) +a’ cos(dy Ad)).

The detailed balance relation
2L+ DPE =@+ )Py

is satisfied by the present treatment, so the P,(,';’ probabilities for transitions with £’ > ¢ can be
obtained.

Figure 2 displays the results for calculation of the transition probabilities inside then = 28
cnergy shell. An undeflected path (A® = —r) is assumed. For smalla = 0.2 only elastic
or transitions with small angular momentum transfer AZ have significant probabilities; a band
along the diagonal is exhibited. As ¢ increases, Af increases and then decreases as t—n-1.
As a increases, the band broadens and larger angular momentum transfers become possible
for all £.

The present treatment is valid (a) for weak fields, in evidence for impact parameters
b > b* = (3Z,/2)%a,, which implies Stark parameters @ < a*® = (3Z,/2)Y2(v,/v), and
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(b) for adiabatic collisions when the collision frequency & is less than the orbital frequency
ws = Vp/a, of the Rydberg electron, so the Pauli replacement holds. These two conditions
combine to yield the partitioning v < v* = (32,/2)"%y, and b > b* in (v, b)-space for Stark
mixing collisions (Flannery and Vrinceanu 1998) for a slow encounter in a dipole field. The
limit v < v* defines our meaning of ultralow coilision energies. The cross section for Stark

mixing is

*® 3Z1a.\ [® n da

Ontntr = 27 [) P{bdb =21 (5;-/‘-,)—) JC P (@, ad)—. (13)
When v < v°® and b < b*, the Stark parameter @ > 1. Since the transition probabilities are
bounded for large a, the contribution to the a-integration is vanishingly small for large a.
decreasing as =3, and can, in practice. be neglected for @ > 1. This implies that the lower
limittobis b, = %Z 1(a/V)a,. Atultralow energies, this limit is always much greater than the
weak-field limit 5*. At the upper limit v = v* of ultralow energies, b, approaches from above
the weak-field limit b*. In practical calculations of (13), various physical effects such as Debye
screening in a plasma, quantum defects and spin-orbit coupling determine an upper limit to
b and hence a lower limit am to @. For trajectories with zero deflection (A® = -m), (13)
varies universally as (Z,a,v,/v)?. Departure from this variation is governed by A (b, v) and
by the physical limits imposed upon the a-integration.

In summary, this letter has presented a new form (5) of the exact quantal solution for
the Stark mixing probabilities. Based on this new solution for the whole array of transitions,
analytical expressions for small quantum numbers n and accurate numerical results even for
large n can be obtained. Using the rich symmetry group of the hydrogen atom, the relation
with previously published resuits (Kazansky and Ostrovsky 1996a, b) has been developed in
an exquisite fashion. The symmetry group also provides a complete exact classical solution
(Vrinceanu and Flannery 2000), capable of explaining the main features of the quantal results
and of providing a quantal—classical (dynamical) correspondence at a level, more fundamental
than Ehrenfest’s theorem and the Heisenberg correspondence.

This research is supported by grants from AFOSR: F 49620-99-1-0277 and NSF: 98-02622.
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Exact solutions of the time-dependent classical equations are obtained for the full array of angular
momentum mixing transitions n¢ — n€’ in atomic hydrogen induced by collisions with charged particles
at ultralow energies. A novel classical expression for the transition probability Pe is presented. The
exact classical results for Pee(a) as a function of €, €' and the Stark parameter . agree exceptionally well
with (exact) quantal results. They compiement the quantal results by revealing essential charactenstics

which remain obscured in the quantal treatment.

PACS numbers: 34.50.Pi, 34.10.+x, 34.60.+z

Stark mixing occurs -when the electron of a Rydberg
atom (in a state with principal quantum number n) changes
its angular momentum, without changing its energy, as a
result of a collision, at large impact parameter b, with a
slow massive particle of charge Zje moving with velocity
v. It is a subject of broad interest and importance in many
areas of modern physics [1] and chemistry [2], astrophysics
(3], line broadening {4), Auger processes (5], and for anti-
hydrogen formation by three-body recombination [6,7] at
ultracold temperatures. Although remarkable effort has
been devoted to obtaining theoretical solutions for Stark
mixing in Rydberg atoms to various levels of approxima-
tion [1-13), the purpose of this Letter is to point out that
the problem is capable of an exact solution in the classical
formulation. The exceptionally rich dynamical SO(4) sym-
metry of H(n,¢) is the key foundation which allows both
classical and quantal exact solutions to be constructed (14]
in a similar and unified way. There is substantial renewed
{1,15-19] interest in the power of classical dynamics in
almost all fields of modern physics, attributed to the de-
sire [15,19] to obtain a more thorough understanding of
the classical-quantal correspondence. Stark mixing by ion
impact is probably the last problem in collision physics
which is capable of an exact solution.

The present new treatment is not an extension of any
previous theory and is capable of providing the first com-
prehensive classical solution for the full array né — n¢’
of collisional transitions in H(n, £). A new expression for
the classical transition probability P is defined in a lan-
guage which exploits the dynamical symmetry. The de-
rived probability for the general array £ — €’ of transitions
has a very simple functional form, can be easily calculated
for any principal quantum number, and provides physical
insight and simple geometrical explanations for the behav-
ior of the transition probabilities. Stark mixing probabili-
ties are calculated and compared with the (exact) quantal
results [14,20]. Considering the Rydberg atom in a frame
which rotates together with the internuclear axis, the Stark
mixing problem can in principle be reduced [11,12] to the
problem of the Rydberg atom in mixed static electric and
magnetic fields. This approach is successful only for the
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particular case of € = 0, which is fully recovered by the
present general fixed frame formulation.

The target Rydberg atom (with averaged electron orbit
radius a,, velocity v,, momentum p,, and angular fre-
quency w, = v,/a,) is centered at the origin O of a fixed
coordinate frame. The trajectory of the projectile, initially
moving with impact parameter b along the positive Z
direction, is assumed to be confined in the YOZ plane. In
addition to the energy E, constant along the Hamiltonian
Hy = p*/2m, — €*/r, the angular momentum L =
r X p of the unperturbed Rydberg electron and the
Runge-Lenz (or eccentricity) vector,

A-p;‘[pr—m,eZH, )

directed toward the pericenter and normalized to angular
momentum units, are also conserved. These quantities de-
fine the dynamic SO(4) symmetry of the hydrogen atom.
Because the SO(4) group is isomorphic with the direct
product SO(3) @ SO(3) of two rotation groups, a special
decomposition, L = #f + N and A = M — N, permits
the dynamics-of th< ..ydrogen atom to be separated into
two decoupled motions. The generators M and N act in-
dependently as angular momenta and are also conserved
quantities for the unperturbed Rydberg atom. They evolve
independently [21] with time on application of a con-
stant electric field £ and precess about E with the Stark
frequencies @s = *+(3/2)a,va(E/e). For weak fields,
the Stark splitting AEs = fiws < fiw, = AE,, the (n —
n = 1) energy splitting. For constant fields, the vectors L
and A vary periodically with frequency ws.

The weak field approximation assumes that the time-
dependent electric field E(r) generated by the passing
projectile of charge Z; e is constant over the atom’s spatial
extent and the dipole approximation for interaction poten-
tial V = er - E is valid. Hence

- Z\eR Zie do .
="~y a
where & is the polar angle between the internuclear vector
R and the Z axis.
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On assuming that the collision is orbital adiabatic (P <
w,), E is constant over one period so that the slow rate of
variation AL /T of the angular momentum over one orbital
period T = 27 /w,, is the classical average

dL e (T - =

— = - — X = - X .

; T j; (r X E)dt e(r) X E(r)
Since the weak field approximation (ws < w,) also holds,
the vectors L and A change very little over one orbital pe-
riod and (r) = —3A/2p, = —3 A(a,va/2¢?). The fol-
lowing set [3],

dL .

— = —wsR X A,

dt ws
of coupled equations=can then be deduced, where both R
and ws = a® now vary with time. The Stark parameter
@ is 3Z,anva/2bv. The weak field (ws < w,) and adia-

dA -
— == - b4
dt wsR L,

batic (P < v./a,) conditions combine to yield the par-
titioning b = (v/v,)a,, when v = v* = (32,/2)" .
and b = (3Z,/2)'2a,, when v < v°, of (v, b) space for
validity of the present solutions. For v = v°, a remains
<|. For v < v*, a can exceed unity. When written in
terms of vectors M and N, the above set of differential
equations yields the set of decoupled equations,

%=—G'RXM, %=+akxN.v 2)

Since the magnitudes M? = N2 = (L? + A%)/4 =
n%i’/4 remain constant throughiut the collision, exact
solutions of Egs. (2) can then be obtained {14] at general
angle @ in terms of finite rotations from the initial
values M(®p) and N(®o), via the orthogonal trans-
formations M(®) = Un(®,Po)M(Po) and N(P) =
Un(®D, Do)N(dDg). For example, if the initial state is
specified by the vectors (L, A) at ®o = 7, then the final
state (L', A"), at & = 0, is determined by the rule

L= ¥y~ + a’cos(my)]Ly + ay”'sin(mry)A; + ay 1 - cos(my)}As,

L) = —cos(mwy)L - vy Vsin(my)Ls + ay”
L, = y~'sin(wy)ls = y~H{a? + cos(wy)lLy + ay~[cos(my) — 1JAr.

Usin(mwy)Ar,

3)

A, = y71 + a’cos(my)AL + ay 'sin(wy)L; + ay 1 = cos(wy)lLs,

A, = —cos(my)A; — vy~ 'sin(my)A; + ay”

Usin(wy)Ly,

A} = y~lsin(my)A; - vy a? + cos(my)A; + ay~*[cos(my) — 1]L;.

Here y = V1 + a? and the components of the initial and
final vectors are defined in the fixed coordinate frame con-
sidered. The above exact solutions (3) are easily verified
and satisfy the invariant relations

L'-A'=L-A=0 4)

and
le + Alz - Lz + AZ - nZﬁz.

(%)
|

The orbit of the final state (n,L’) is confined to a plane
perpendicular to the final L’ and the energy is preserved
(since n does not change). The above constraints, Egs. (4)
and (5), define in the (L, A) space a hypersurface on which
the inizial state, defined by the initiil angular momentum
quantva number ¢, is uniformly dic: ibuted. The volume
of this hypersurface is therefore given by

Vae = [[ 8(LI - 5OS0AL - T = E)(L - AYALAA. ®)

Each point from this manifold evolves during the collision according to the rule (3), so that only a fraction of possible
initial states can produce the final state with angular momentum quantum number €', after the collision. The volume of

(L, A) space which overlaps the initial and final states is

Vaee = f f 5(IL] - €R)S(L'| — eMS(IAl = hivn? — 2)8(L - A)dLdA. €

The € — ¢’ transition probability is then, in a geometric
sense, the ratio of the two volumes

n v d
Pyt = ———1;‘: : ®)
n

This is a novel result in that Eq. (8) is defined in terms
of the new (L, A) representative space, being more appro-
priate, than the customary (r,p) phase space, for direct
expression of the dynamical SO(4) symmetry of H(n,£).

The six-dimensional integral (6) can be calculated directly,
while the integral (7) eventually reduces to yield the one-
dimensional integral [14]

PR R S—
¢ mhn? | — cosy (22 - A)(B - 7z%)

for the transition probability. This, in tum, may be
expressed in terms of the complete elliptic integral,
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0.00
0 7 21 28
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el
FIG. 1. Probabilily for the 18 — € transition, within the

n = 28 energy shell, for a given Stark parameter a = 0.4.
Exact quantal results are denoted by dots.

K(m) = [7’%(1 - msin*x)""/2dx, as

2¢'/n? 953/(3 A) B <o.
n n -
Pg'e)(X) = m ng}f;‘w , B>0,A<0,
KE-2/3) B >0,4>0,
%)
where
A(/n, € /n;x) = cos(uy + uz) = cosy
1 = cosy
(10)

cos(u; — uz) — cosy
1 = cosy '

B/n. t'/n,x) =

The angles u; and u; depend only on the initial and final
states via cosu; = 2€2/n% — 1 and cosup = 2€'?/n? — 1.
The rotation angle y, which depends only on the Stark pa-
rameter o and the polar angle AD = ¢ — ¢ swept out
during the collision time interval (to, ¢), is determined by

cos% =[L+ alcos(vVl + a2 A®))/(1 + a?).

20 25

0 5 10 15

FIG. 2. Density plots of the € — ¢ transition probabilities,
calculated within the quantal treatment for @ = 0.4 and n = 28.
The probabilities increase as the color becomes darker. The
continuous and broken lines represent the classical A = 0 and
B = 0 ridges.
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The condition B < 0 defines the classical inaccessible
region. Two types of singular points are apparent from the
solution (9). At B = 0, the transition probability Pe¢(a)
has a finite jump (step discontinuity) and at A =0 it
has a logarithmic (cusp) singularity. These features are
displayed in Figs. 1-5 for representative transitions. For a
given Stark parameter a and initial angular momentum ¢,
the solutions of the equations A = 0 and B = 0 provide
the critical values

¢ =¢

[N |><

2 12
cos{— * (%5 - l) sin

of the final angular momentum, where the cusp or step
singularities are located. The inequality A < B is strictly
fulfilled except for the limiting cases of € or £ — 0 or
n when A = B. These limits are readily deduced from
Eq. (9) to provide the following probabilities:

P(l’t)(a) - el/(ﬁnz)

YO sin(x/2VEint(x /2) = (€/n)
P () = ¢'/(hin?)

e sin(y /W) = sin(x/2)
PR(a) = e

sin(x/2V(€/n)F = sin*(x/2)

The € — €' = 0 transitions have zero classical probability.
The specific case [12] of 0 — ¢’ transitions is therefore
directly recovered from our general result (9). "

Figure 1 shows the classical probability P?sl)s for the
representative array € = 18 — ¢’ transitions. The quantal
results [14,20] oscillate about the classical background.
Figure 1 also displays the A = 0 cusp at {_ followed by
the B = 0 downward step at €', as ¢ is increased from
0 to n. In the central region A < 0and B > 0.

Figure 2 provides the density map of the quantu r-oba-
bilities [14,20] for the full array of € — &’ .ansitions
at @ = 0.4. In the classical forbidden regions (where
B < 0), the upper left and lower right corners, the quan-
tal probabilities decrease exponentially. The lines of singu-
larities A = 0 and B = 0 are also shown. Along these,

0.025 | p®
0.020 Pz'w
0.015
0.010
0.005

(o)

0.0 01.5 1.0
10

FIG. 3. Probability for the 18 — 2 transition, within the
n = 28 energy shell, as a function of the Stark parameter a.
Exact quantal results: dotted line.
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FIG. 4. Density plots of the £ = 18 — ¢’ transition probabili-
ties, calculated within the quantal treatment for n = 28, as a
function of a.

the classical transition probabilities display cusp and step-
like behavior, respectively, and, in their vicinity, the quan-
tal results have local maxima. Figure 1 follows from a
vertical line drawn through the plot at € = 18, show-
ing a cusp-step variation. Figure 2 predicts step-step and
step-cusp variations for transitions from € > 19.

In Fig. 3. the classical and quantal transition probabili-
ties for the 18 — 2 transition are plotted as a function of
the Stark parameter a. This plot can also be obtained by
following the variation of the transition probability along
a horizonta! !ine with €/ = 2 in Fig. 4.

Figure + gresents a density map for the quantal proba-
bilities for transition from the initial angular momentum
¢ = 18 to any €' and for any value of a. As a — 0 the
span of possible final angular momenta is reduced, such
that only elastic transitions are possible at @ = 0. The
classical singularity lines A = 0 and B = 0 illustrate
again the correspondence with the quantal results. The
cusp-step pattern of Fig. 1 is also explained by a vertical
line at @ = 0.4 of Fig. 4. For low a < 0.4, a step-step
variation is predicted, i.e., the accessible €' lie within the
range ¢ < € < ¢',. The results in Fig. 5 confirm this
prediction. Cusp-cusp patterns occur at higher a = 0.5.

In conclusion, the exact solution (3) of the classical
equations (2) has been obtained, by exploiting the SO(4)
dynamical symmetry of H(n,€). The novel expression
(8) provides the general result (9) for the classical proba-
bility Py for the full array of Stark mixing transitions
né — né'. Since A and B are symmetrical in (¢, ¢')
the probability (9) satisfies the detailed balance relation
2€P\) = 20'PY,. Probability conservation [ PiRdE
=« | is also satisfied. Cross sections [14] may be calcu-
lated from Eq. (9). Exceptional agreement is obtained be-

tween the classical and quantal Pg';,) (a) as a function of
¢, ¢' and the Stark parameter a. The common SO(4) sym-
metry provides this classical-quantal correspondence at a
level more fundamental than Ehrenfest’s theorem and the

L 1oy(28)
0.10 Pt'.ls(o.ls)

o

.08¢
.06}
.04t
02+

o o o

0.00 - . -

0 7 14 2, 28
e -

FIG. 5. Asin Fig. 1, but for Stark parameter a = 0.18.

Heisenberg correspondence. The classical method is also
complementary in that it reveals very succintly essential
and valuable characteristics which remain obscured within
the quantal treatment. This reflects the essential power of
classical dynamics when applied to collision problems.

This work has been supported by AFOSR Grant
No. 49620-99-1-0277 and NSF Grant No. 98-02622.
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LETTER TO THE EDITOR

Analytical quantal collisional Stark mixing
probabilities

D Vrinceanu and M R Flannery

School of Physics, Georgia Institute of Technology, Atlanta. GA 30332, USA
i Received 27 September 2000

Abstract

An exact expression for the probability P/%) of Stark mixing transitions between
arbitrary angular momentum states £ and ¢’ within the same energy shell n, as
a result of a collision with a slow charged projectile at large impact parameters-
is presented. The formula obtained is compact and easy to use for numerical
evaluations even for very large quantum numbers (# ~ 100). A classical
approximation is directly obtained and compared with the exact quantal result
in the limit of large n. Two distinct sets of quantal oscillations are predicted.

(Some figures in this article are in colour only in the electronic version; see www. 1op. oxg)

In a previous letter, Vrinceanu and Flannery (2000a) provided a new quantal theory in a fixed
reference frame for the probabilities Pyy for the full array n¢ — n’ of transitions induced by
collisions between H(n2), or any Rydberg atom, and an ion of charge Ze at ultralow energies.
The conventional approach to this problem consists in solving a coupled-channel system of n?
differential equations. For large n, this task becomes prohibitively difficult even when some

csimplification can be introduced, such as that, for example, by Beigman and Syrkin (1985). A
time-evolution operator method (Pfennig 1971) depends on the roots of an algebraic equation
of degree n? so that, in general, it is not possible to obtain analytical results and it was only
applied to transitions between the parabolic states of the n = 2 shell. The alternative method
proposed by Vrinceanu and Flannery (2000a) exploits the rich dynamical SO(4) symmetry
of H(n¢) to solve the problem exactly in the fixed-frame representation. A similar approach '
by Kazansky and Ostrovsky (1996a, b) was successful only for the special case of n0 — nt’
transitions. The solution presented by Vrinceanu and Flannery (2000a) has the advantage
that the full array P,‘.’? of transition probabilities is obtained at once for a given velocity and
impact parameter of the projectile. Moreover, analytical expressions were obtained for low n.
Numerical results were possible for low to intermediate n = 30.

The present letter reports a significant advance to what was previously obtained. An
exact analytical expression for the quantal probabilities P,‘.'}) is now presented for any n.
The remarkable simplicity of the result allows both accurate numerical resuits for very large
n = 100, and an immediate classical limit.

The target Rydberg atom is described by the Pauli-Lenz vector operator A and the angular
momentum vector operator L. The projectile with velocity v along the z-axis, internuclear

0953-4075/01/010001+08530.00 © 2001 IOP Publishing Ltd  Printed in the UK Lt
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vector R and impact parameter b is characterized by the Stark parameter @ = 3Za,va/2bv.
where a, and v, are the average electron-orbit radius and velocity. The adiabatic dipole
interaction is V(R) = —Ze2(r) - R/R?, where the averaged vector position of the Rydberg
electron of mass m, is (r) = —3A/(2m.v,). Under the adjabatic, dipole and classical path
assumptions, the Schrodinger equation for the evolution operator in the interaction picture is
(Vrinceanu and Flannery 2000a)

3U
m%i = —a(A;sin ® + A3 cos D)V,

when time ¢ is replaced, via the relation R2d = —vub, by the angle ® between R and the
(positive) z-axis of a fixed frame. The previous work of Vrinceanu and Flannery (2000a) used
the exact solution for U, directly to provide the full array of transition probabilities. However,
upon the decomposition L = M + N and A = M — N, the solution separates as

Uy=Uy® Uy

where the operators Uy and Uy are defined by
UM - eiOM./he-iAO(Ml—aM:)/he-iOoM,/h

and
Uy = SIOM/M—IAG(N saNs)/h g —idaMi /2

and where A®(2) = & (1) — (1) is the polar angle swept out by R within the time interval
(¢ — tp). Since the angular momentum-like operators M and N commute, the corresponding
evolution operators Uy and Uy act independently as rotations in carrier spaces of dimension
2j+1=n.

The probability for transition £ — ¢’ between states with given angular momentum is
defined by

1 ¢ [

m _ m 2

Pt’l = 20+ 1 Z ,Z lal'm’o—tm (I)
mm=lm ==t

“where the (¢, m) — (¢, m') transition amplitude between angular momentum states within

the energy shell of quantum number n is

", o = (nm'\Up ® Unlntm) = 3 cim C5m. DU (U)DL(UN) [P

wvp'v

and where DU(R) is Wigner's (2 + 1)-dimensional matrix representation of the finite rotation

R.
The tenfold summation within equation (1) can be contracted to yield the following resuit:

(,)_2"4’1 a=1

t L
PR = .

2
i ] Hi (m) 3)

@L+1) { l.
Lmjt' 8| J

which is compact and involves only one summation. Here {- - -} is the 6-j symbol for coupling
of three angular momenta and H; is a special matrix element of the irreducible representation
of the group O(4). This function (also called the generalized character x1. associated with the
irreducible representation of the rotation group) is well studied (for example, see the books
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by Talman (1968) and Varshalovich er al (1988)). It can be written in terms of ultraspherical
polynomials C\* as

[@j+D@j=D" . m\t e n
. - 1 st - -
Hj (n) = @2L)" 2 L+ D! (sm 2) Comt (cos 2).

The angle 7 is the proper angle of the rotation produced by the successive rotations Uy ' and
Uy and is uctermined from the two-dimensional representation of the product Uy Uy by

l+alcos V1 +a?A®

1 +a?

The formula given by equation (3) is capable of providing exact numerical results even for
large quantum numbers n, in contrast to equation (1) where the number of terms to0 be summed
increaSes dramatically with n. Moreover, a classical limit of equation (3) can be directly and
easily obtained. Note that the capacity of the projectile to produce angular momentum changes
is governed solely by the key parameter n, the argument of H, inequation (3). Since A® varies
with time 1, expression (3) furnishes Py as a function of r and the Stark parameter a, absorbed
within parameter 7. It can be shown that both detailed balance (2£ + 1) Py = (2¢' + HPy
and probability conservation 3, P{% = 1 are satisfied. For the special case of zero initial
angular momentum, the 6-j symbol is (Varshalovich ez al 1988, p 299)

{ll 0 L }-(—l)"“‘" St
iJ il JnRT+1)

The probability for 0 — ¢ transitions is then

cos-;- = %Trace; [UnUF') = )

2 +1
Pl (x) = ——H}p (x)

in agreement with Kazansky and Ostrovsky (1996a,b). Equation (3) may be recast into the
interesting form
n-1 ' 2
PR =n@l' +1) Y vl ] PR(X).
IR A J

Since the square of the 6-j symbol is the probability of coupling three angular momenta, a
physical int .pretation may be given for the above formula. The Stark mixing transition can
therefore be - 2£n as a multi-step process involving partial waves of angular momentum L.

The proof of equation (3) is based on standard analytical techniques of rotation algebra.
The main steps are represented by the diagrams in figure 1. The conventions adopted are
similar to those described in detail by Zare (1988) and by Varshalovich er al (1988). Only the
basic rules are explained here. Every intemal line represents a summation over the magnetic
quantum number of an angular momentum with the quantum number attached to the line. A
double line represents the summation (3~ ;(2j +1)...) over the angular momentum quantum
numbers. The coupling of two angular momenta is represented by a vertex with two incoming
and one outgoing lines and has associated Clebsch-Gordan coefficient

im Jym,
jm im

Cj‘:-.h., = (jimyjamz|jm) = =

Jamy Jam,
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Figure 1. Schematic proof of the main result.

Since the Clebsch—Gor.'an coefficient is real, the conjugate symbol with one incoming
and two outgoing lines aso represents the same coefficient. The mm; matrix element of the
2j + |-representation of rotation R is represented by a directed line with a wavy line attached

R
DY, (R) = (jmi|Rljma) =

mymy
im, imy
The matrix element associated with the inverse rotation R~! has the same representation

but with the direction reversed. Under this simple notation, the amplitude equation (2), for
example, has the following representation:

agz’o-u = (n'm'|U;intm) =




Letter to the Editor

Ls

Table 1. Exact expressions for the Stark mixing transition probabilities inside the shell n =

1.2.3.4and s.

n

~
~
~

@+ DR = fx Q=2 x (x =cosn/2)

1
2

-_0 0 O
— — 0o ©

B W W RNNN - = om0 00 00 WNRN -~ - 00 0 0 N~ -0 O O

B bW A W N A WN =~ B WN O WWNWN~ WD~ QO NN~ =0
B 3 0 B 5 3 e G S b g e e - BT T HS S e e T e e s e e

1

x
1
2+x?

2

(=1 +4x2)?
12

1
1 —2c2 +4x*

34212

19 + 22x3 + 4x¢

(=x+ 2%}

{~1+6s2)?

4x?

1

2+ 14522 - 3962 + 324x®
1+9x4

443x2

2512 +4x +4x8

11 +20x2 + dx*

§2+ 7522 +44x% + dx®

(1 - 12x2 + 16242

(-3x +8:%)?

(—1+823)2

xz

1
9 — 1622 + 996x* — 179215 + 1024x*
3+ 11452 = 384x% + SIx®
1+dxteles

$ +4x? ) -
27 + Zaré — 284x¢ — 76815 + 1024x% -
4= 13x2 42824 + 1658

17 + 3822 + 8x*

§9 — S2x? — 184x* + 288x% + 64x}

95 + 246x2 + 168x* + 16x°

2509 + 364422 + 3624x* + 1184x° + 648

The main steps (a)—(d) in the proof of equation (3), illustrated in figure 1, are outlined

briefly below.

(a) The upper left-hand diagram is just the transition probability equation (1). The next
diagram is obtained by inserting the identity operation UyUy ' on line £'.
(b) The rotation matrix element from one branch of the Clebsch-Gordan coefficient can be
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Figure 2. Stark mixing probability for transitions within the energy shell # = 100 from the initial
state ¢ = 80, with angle n given by cos /2 = 0.1. as a function of the final angular momentum
¢'. The exact quantal result is represented by the dots, the classical limit is represented by the fuil
curve and the initial state is indicated by the dotted line.

‘redistributed’ to the other two branches. As an effect of this, the matrix elements of
the rotations Uy on branches with angular momentum j are annihilated and the Uys are
multiplied by Uy ' to give the rotation G = Uy'Uxm. The angle of this rotation is # of
equation (4).

(¢) This step involves the identity provided by Varshalovich et al (1988) in equation (22),
p 260. This formula gives the summation of products of four Clebsch-Gordan coefficients
in terms of a double summation over the angular quantum number and the magnetic
quantum number of two Clebsch-Gordan coefficients multiplied by two 6-j coefficients
represented as tetrahedrons.

(d) Itis easy to prove that the central object, which has two loops linked by the L-summation
(and implicitly an M summation), is a rotational invariant. Therefore, one can choose the
direction of the z-axis along the direction of the rotation G. As a rotation about the z-axis,
the matrix representation of G is diagonal and the line that links the two loops disappears,
since only terms with M = 0 are allowed in the summat‘on represented by this line. The
transition probabili.y is then obtained as an L-summ. ‘son of products of two identical 6- j
symbols and two oF;ects which depend only on the 2ngie n, the principal quantum number
n and the angular momentum index L. These objects are identical to H,. (n) because, by
definition,

Hj (n) = Z Cf:t.o e,

A detailed analytical proof of equation (3) has also been derived without utilizing
the diagrammatic techniques presented here. The transition probability equation (3) is a
polynomial in the variable x = cosn/2. Only even powers occur in this polynomial and,
because the L-summation in equation (3) starts with |¢ — ¢'|, this polynomial has the factor
(1 —x2)1¢-¢1_ Table 1 provides the exact analytical probabilities for transitions within the states
with principal quantum numbern = 1,2,3,4and 5. They agree with the expressions obtained
previously by Vrinceanu and Flannery (2000a) for n = 2, 3. Expressions for larger values of
n have a similar structure and the corresponding polynomials can be easily calculated.
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Figure 3. Stark mixing probability for transitions within the energy shell 2 = 100 from the initial
state ¢ = 60, with angle n given by cos n/2 = 0.9, as a function of the final angular momentum
. The exact g 1 result is rep d by the dots, the classical limit is rep: d by the full
curve and the initial state is indicated by the dotted line.
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Figure 4. Stark mixing probability for transitions within the energy shelt .- = 100 from the initial
state £ = S 1o the final state £’ = 80, as a function of cos n/2. The exactiqus~. - result is represented
by the darker (wavy) curve. The classical limit is represented by the lighter curve.

In the limit of very large quantum numbers the square of the 6-j symbol reduces (cf Zare,
1988) to 1/(24x V). In this case, the volume V of the tetrahedron formed by the angular
momentum vectors with magnitudes ¢, ¢’, L and three vectors of magnitude j as indicated
graphically in figure 1, is determined by

. . . 2.
V2= L[l (2% + 2207 - 207) - j2 (€ - ¢7)" - 2L
The square of the generalized character function H,;(n) has the classical limit obtained by
Kazansky and Ostrovsky (1996a) as
1

|
2sinn/2 [sin?n/2 = (L/2j)?)

HY(m= o5
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Using these two approximations and transforming the L-summation in equation (3) to an
integration, the classical limit of the transition probability is obtained. This limit is identical
to the probability derived by Vrinceanu and Flannery (2000b) from the classical equations.
Figures 2—4 demonstrate that the classical limit is effective for large quantum numbers. All
the examples considered pertain to n = 100 and took a few minutes to produce on a PC.
Figures 2 and 3. for smali and large bv, respectively, illustrate that the quantal resuits oscillate
about the classical background. Figure 3 further shows that the quantal result exhibits the
characteristic exponential decay in the classical forbidden regions (¢’ < 20and ¢’ > 90). Tae
classical singularities are related to the fact that the volwsae V — 0 for certain combination®
of angular momenta. A detailed analysis of the various possible classical pattems is a subject
explored elsewhere (Vrinceanu and Flannery 2000b). Figure 4 illustrates the variation of the
probability for large momentum transfer with the angle n. For large bv, when cos n/2 =1,
the transition is classically forbidden and the quantal probability decays exponentially. Small
by impliescos n/2 — 0 and the quantal results oscillate about the classical background. The
present theory therefore predicts two distinct sets of oscillations in P,(.'?(n)—one set evident
in the variations with & (or £) and the other in the variation with n, i.e. with bv and A®. An
approximation for the 6-j symbol and H,, more refined than the classical limits given here,
should provide closer agreement with the quantal transition probabilities.

The probabilities Py are valid in the regions, [v < v* = (BZ/)Vva b 2 b* =
(3Z,/2)"*a,) and [v 2 v*, b > bc = (v/va)aa], of (v, b)-space where both the adiabatic and
weak field conditions are simultaneously satisfied. :

What is possibly the last remaining problem in collision physics, capable of an exact
solution, has now been solved exactly in closed form. Not only does the present solution
reflect the intrinsic mathematical beauty of the problem, it can easily be applied even for large
n.

This research is supported by grants from AFOSR: F 49620-99-1-0277 and NSF: 98-02622.
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Classical and quantal collisional Stark mixing at ultralow energies
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Exact classical and quantal solutions are presented for the full array of intrashell transitions nf—nt"',
between any angular momentum states. induced by slow distant collisions with a charged particle. The colli-
sions are adiabatic with respect to the orbital frequency of the atomic electron and the transitions are induced
by the weak ion-atom dipole field generated by the ion moving along a classical path. The rich symmetry of the
problem allows a unified approach and is the source of the excellent agreement, beyond the usual Ehrenfest’s
correspondence principle. between the classical and quantal treatments. A classical transition probability is
defined. Probabilities for transition between any angular momentum states within a high Rydberg energy level
are derived in exact analytic forms and are analyzed for a large number of numerical examples. The transition
probabilities obtained from the three methods—quantal and classical formulations and Monte Carlo classical
simulations—are directly compared to provide excellent agreement.

DOI: 10.1103/PhysRevA.63.032701

I. INTRODUCTION

The collision of a siow heavy charged particle with an
excited atom at large impact parameters induces transitions
between neighboring angular momentum states of the exited
atom. For very low velocity of the projectile, the transitions
with change in principal quantum number are much less
probable than the quasielastic angular momentum changing
collisions at large impact parameters. Because these states
are very close in energy, or are even degenerate as for hy-
drogen and Rydberg atoms, the process is very efficient since
little or no energy transfer is required. In fact, the cross sec-
tions increase as the energy of the incoming particle is de-
creased. This process is called Stark mixing and is important
in many problems in atomic physics. For example, Bethe (1]
analyzed the absorption of low-energy negative K™ mesons
in liquid hydrogen on the recognition that the Stark mixing is
essential in such processes. Also, Stark mixing is included in
the calculation of the Auger (or autoionization) process,
which follows the collision between ions and atoms [2] and
in zero-electron-kinetic-energy (ZEKE) photoelectron spec-
troscopy [3]. Stark mixing has also been important in astro-
physics (e.g.. [4]). in recent efforts to produce antihydrogen
at 4 K [5)] and for general three-body recombination at ul-
tralow energies [6]. The first stage in recombination at ul-
tralow temperatures T, [6] is a very rapid collisional capture
into high Rydberg states with high angular momentum and
large radiative lifetimes, at a rate proportional to T, *’.
Since the n-changing collisions are relatively unimportant at
ultralow energies, the Z-mixing collisions are essential in
producing the low angular momentum states required to ra-
diatively decay at relatively high rate to low n levels, thereby
stabilizing the recombination.

Experiments [7] on single ion collisions with alkali-metal
Rydberg atom have measured large Z-mixing cross sections
for slow projectiles, including dipole-forbidden transitions.
Various theoretical models have been developed to repro-
duce the experimental data. Even though a set of coupled-
channel equations can be written, their solution becomes im-
practical for the large quantum numbers considered in the
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experiment (n~28). On averaging over the azimuthal quan-
tum number m, the size of the problem becomes much re-
duced and satisfactory results have been obtained [8]. Con-
sidering the Rydberg atom in a frame that rotates together
with the internuclear axis, the Stark mixing problem is re-
duced to the problem of the Rydberg atom in mixed static
fields: electric, provided by the projectile ion, and magnetic,
produced by the noninertial (Coriolis) forces. In this way, the
well known results (in both classical [9] and quantum
[10,11] mechanics) for the problem of interaction between
weak fields and an atom can be adopted [12] to provide a
solution for the Stark mixing problem. In a remarkable series
of papers, both classical [13-15] and quantal [15.16] ver-
sions of this approach have been successfully applied for the
zero to higher angular momentum transitions, by including
the quantum defect appropriate to the experiments 7). Clas-
sical trajectory Monte Carlo simulations [17] wers also in
agreement with the experiments [7]. o

All theoretical efforts rely on the impact p.rameter for-
malism, in which the projectile is a classical particle moving
along a definite trajectory. The dipole interaction has been
proven to be a good approximation for the projectile-target
potential because of the long-range Coulomb interactions
and the decisive role of large impact parameters. For slow
moving ions, Stark mixing can occur without energy trans-
fer. The dynamics of the Rydberg atom is therefore adia-
batic. The orbit of the Rydberg electron can still be consid-
ered elliptical, but its shape and orientation change slowly
during the collision time, which is very much longer than the
orbital time. This classical mechanics picture translates into
the quantal description by restricting the dynamics to the
energy shell, as prescribed by adiabatic perturbation theory.

In this paper. a unified theory for the general time-
dependent solution of collisional Stark mixing is presented,
both in the classical and quantal formulations. The excep-
tional rich dynamic symmetry of the hydrogen atom provides
the key foundation that enables both the classical and quantal
solutions to be constructed in a unified way (Sec. II) by using

“group representation theory. This classical-quantal corre-

spondence transcends the well known Ehrenfest’s theorem

©2001 The American Physical Society
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(as observed in the general case of weak field-atom interac-
tion [15.18]) just because of the SO(4) dynamical group
symmetry' of the energy shell of the hydrogen atom. The
agreement. as expected, is very good. It is shown that the
present quantal solution (developed in Sec. IIl A) can be for-
mulated (Sec. III B) so as to provide the rotating coordinate
frame formal result obtained in [12,15,16). The efficiency of
the present quantal solution is demonstrated in Sec. VI. A
new classical solution applicable to transitions between arbi-
trary angular momentum states is derived in Sec. IV A. We
define the classical transition probability, in a language de-
signed to exploit the dynamical symmetry, as the normalized
volume of phase space accessible to both initial and final
states in Sec. [V B. Monte Carlo simulations (Sec. V) are
also performed to yield-results in agreement with the classi-
cal expression for the Stark mixing probabilities.

II. KINEMATICS OF STARK MIXING

Stark mixing occurs when the electron of a Rydberg atom
changes its angular momentum, without changing its energy.
as a result of a collision, at large impact parameters, with a
slow massive particle of charge Z,e. In addition to the en-
ergy, given by the constant Hamiltonian

the angular momentum L=rX p of the unperturbed Rydberg
electron and the Runge-Lenz (or eccentricity) vector

A= pzr—(p~r)p—m,e2;]/ v-2m,E, 1)

which is directed toward the pericenter and normalized to
angular momentum units, are also conserved. These quanti-
ties define the dynamic SO(4) symmetry of the hydrogen
atom with given energy E, which is a subgroup of the global
SO(4,2) symmetry group. Because the SO(4) group is iso-
morphic with the direct product SO(3)®S0(3) of two rota-
tion groups, a special decomposition

L=M+N, A=M-N ()

permits the dynamics of the hydrogen atom to be separated
into two decoupled motions. The generators M and N act
independently as angular momenta and are also conserved
quantities for the unperturbed Rydberg atom. They evolve
independently [9] with time on application of an electric
field.

The orbital electron interacts with the time-dependent
electric field &(r) generated by the passing projectile of
charge Z,e. In the weak-field approximation, this field is
constant over the spatial extent of the atom. In this approxi-

“This group contains sufficient generators to enable one to formu-
late the dynamics of the system solely in terms of operations of
irreducible representations of the group [19].
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FIG. 1. Geometry of the Stark mixing collision.

mation, which is the same as the dipole approximation, the
interaction potential V=er.is

*—Z'ez 9 v D+ -] 3
=73 F(ysm zcosP). 3)

The impact parameter b, the impact angle P, and internu-
clear vector R are displayed in Fig. 1. The angular momen-
tum of relative motion Ly=uR*®= ~ uvb (where u is the
reduced mass of the projectile-target system) remains con-
served since L» L (so that L, and L are effectively decou-
pled).

Various frequencies or time scales are important to the
present discussion of the collision, and are as follows.

(i) The projectile rotation (collision) frequency

_dd _bvwesy 1
- FrTm T 5

from which the collision time 7, can be defined.
(ii) The transition frequency

Ei_Ej
SO

of the Rydberg electron. For transitions n—n | between
neighboring levels, w, = is simply wo/n*=w,=v,/a,,
the orbital frequency (the Bohr correspondence principle).
Here a,=n3%ag and v, =vg/n are the averaged orbital radius
and velocity.

(iii) The Stark precession frequency

32a,v,

3
ws=-2-a,v,,(€le)= 3 Fo

for the precession of A about R provides the precessional
frequency of the Runge-Lenz (eccentricity) vector A of the

Rydberg orbit about the field direction &.

032701-2
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(iv) The spin-orbit coupling frequency wsg corresponds
with the maximum fine-structure splitting and is approxi-
mately [20] aZsw,/n, where ags is the fine structure con-
stant.

(v} The quantum defect frequency wqp is the precessional
frequency of the electron orbit due to its interaction with the
polarizable core. This frequency is important when one-
electron atoms are considered other than hydrogen. The com-
bined polarization of the core due to the orbital electron and
the charged projectile has to be taken into account. Given the
quantum defect §,, the quantum defect frequency is

wQD~5 6/(0, //

when # is sufficiently large such that the core penetration
and relativistic corrections can be ignored [21].

By considering the exp(iax) factor in time-dependent per-
turbation theory, several types of collisions can be classified,
as in [22], by comparing the above frequencies.

The Stark mixing parameter a is defined as the following
ratio between the Stark and collision frequencies:

T )

When a<1, then wgry<€1 and the collision time is much
shorter than the Stark precessional time so that Z-changing
or Stark sudden transitions are favored. This is in contrast to
Stark adiabatic transitions where a® 1; the electronic angu-
lar momentum does not change since the atom has sufficient
time to relax to the Stark effect.

The orbital parameter 3 is the ratio

va, b
B=wR/w,,=——:.—£.

v, b b

For an orbital adiabatic collision, when 8<1 or b>b,, the
orbital electron adjusts itself adiabatically to the slow ion
perturbation. Since w, T 1, NO energetic transitions oc-
cur. The orbital sudden regime, 8% 1 or b<b., is associ-
ated with w,T.o<€1 and impulsive n—n’ transitions.

The product of the a and B parameters defines the ratio
wslw,=(32,/2)(a,,/b)2. which depends only on b (and not
v). For weak fields the Stark mixing splitting AEs=fws
<Aw,, the (n—n=1) energy gap. This also means that the
internuclear distance R is much greater than the mean orbital
radius a,. In this approximation, the electron’s orbital time
is then much shorter than any characteristic collisional time
to cause Z changes to the elliptical orbit. The vectors A and
angular momentum L, which are constant for the unper-
turbed motion, then become good dynamical variables for
the description of the perturbed motion, within the weak-
field approximation.

With respect to orbital motion, the collision is sudden or
adiabatic according to b<b. and b>b., respectively,
where bo=(v/v,)a,. With respect to the Stark frequency,
the collision is adiabatic or sudden according to b<bjg and
b>bg, respectively, where bg=(v,/v)a,. The impact pa-
rameter b space can then be partitioned as in Fig. 2. As v

PHYSICAL REVIEW A 63 032701

b= La,
n
—Orbital Sudden —fe——— Orbital Adiabatic ——

1
|
—— Stark Adiabatic — = Stark Sudden—»
Zya,,

by = 1}
FIG. 2. Partitioning the impact parameter space b.

decreases, b increases outward and b increases inward.
thereby limiting the extent of the two sudden regions where
n changes and # mixing occurs. The variation with v can be
represented by a (v,b) phase-space diagram partitioned into
the characteristic regions as illustrated in Fig. 3. For v>v*
=(3Z,/2)"?v,, the (n,/) changing and # changing (orbital
and Stark sudden) shaded regions overlap and expand. in
direct contrast to ultracold speeds v<u*, where the orbital
and Stark adiabatic (clear) regions increase and the shaded
regions diminish and do not overlap, thereby indicating few
collisional changes. The region of interest here is the overlap
of the orbital adiabatic (wp<w,) region, b>bc
=(v/v,)a, with the weak-field (vs<w,) region, b>b*
=(3Z,/2)"?a,,.i.c., the region in Fig. 3 defined by b>b,
for v@v*=(32,/2)"%v, and by b>b* for v<v®.

The following formulation assumes that the Rydberg
atom, during the collision, occupies the same degenerate en-
ergy shell. The main element of the perturbation potential (3)
is the electron position vector r, which by Pauli's replace-
ment rule [23]

JA
r~(r)=—§-p—" ()

is replaced by its average (r), a procedure valid for orbital
adiabatic collisions (see Appendix A for a detailed explana-

eV
v/v,
300 K
V=32 Orbital Adiabatic
Stark Sudden
b.
ultracold Stark Adiabstic ————__
(4K)

Orbital Adiabatic

b* = \3Z,2 b/ay

FIG. 3. Partitioning the v-b phase-space map into regions char-
acterized mainly by (a) energy changes, (b) energy and angular
momentum changes, (c) angular momentum changes, and (d) no
changes. Regions for strong and weak field collisions are also
shown.
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tion). Since Z,e°r/bu is then @A, the pertﬁrbing potential
(3) can be written in terms of the components A, and A; as

- dod
Via)=e(r)-&(1)= ‘07(‘42 sind+A,cos P),

under the adiabatic, dipole and classical path assumptions.
"Moreover, thz components {L,.A5.A3} generate a subgroup
of the original symmetry group. The solution of the problem
can then be written in terms of these symmetry-group gen-
erators and the Stark parameter a, which acts as a coupling
constant. Under the above approximations, the collision pa-
rameters v, b, and Z, become combined into one parameter
a. e
The cross section for Stark mixing is

»
Ontng' =270 fo P, bdb

3Z,a,\2 (> m da
=21r( ) j Pl fadd)—~. (6)
0 a

2v/v,

The probabilities PU), obtained here are defined only in the
full orbital adiabatic region > b for v>v* and in the adia-
batic region restricted by the weak-field condition 5>b* for
v=u* (see Fig. 3). When v<v* and b<b®, the Stark pa-
rameter a> 1. Since the transition probabilities are bounded
for large a, the contribution to the a integration is vanish-
ingly small for large a, decreasing as a@™~, and can be ne-
glected for a>1. Cross section (6) can then be defined at
ultralow speeds v<v*, when the lower limit b,,, to the
b-integration ‘s taken as the weak-field limit 5*. For higher
speeds v~ u*, the probabilities determined here are valid
only in the {ull adiabatic region 5> b and do not hold in the
(oribital sudden) region b* <b<b required in (6). In prac-
tical calculations of Eq. (6), various physical effects such as
quantum defect, spin-orbit coupling, and Debye screening in
a plasma determine an upper limit to the b integration and
hence a lower limit a,,;, to the a integration. For example,
the spin-orbit splitting overlaps with the Stark splitting when
b>boy, . wWhere bpgy~nPap(3Z,/2)?aq. Similarly, the
quantum defect comes into effect for the critical by,
~n$2/V2571%(37,/10)2a. The Debye radius Rp
=(kT/4m*Z,e*N)'?, where T and N are the temperature and
number density of the projectiles, is another viable upper
limit to the impact parameter [4]. Stray electric fields in the
collision region can also impose an upper limit to the impact
parameter. The decision of which limit should be adopted in
the definition (6) depends, of course, on the specific problem
considered. These cutoff procedures are crucial for low an-
gular momentum transfers where the transition probability
P(a) cannot offset the 1/a° singularity (cf. Ref. {4]) as b
—. The initial and final angles ®, and ®, between which
the Stark mixing is effective, are also dependent on the spe-
cific cutoff procedure [14]. For trajectories with zero deflec-
tion (A®=-1), then Eq. (6) varies universally as
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(Z,a,/v)?. Departure from this variation is governed by
Ad(b,v) and by the physical limits imposed upon the a
integration.

The discussion above is valid for both quantal and classi-
cal descriptions of Stark collisional mixing, since both in-
volve only kinematics and general dynamical symmetry ar-
guments. It is shown below (in Secs. Il A and IV A) that
both quantal and classical dynamics are governed by the fol-
lowing generic equation: '

oU _  dd . \

e _a?T(Jz sin®@+JycosP)U (7
for the time evolution operator U within the rotation Lie
group SO(3). The generators {J,./2.J3} of this group have
the commutators [J;.J,]=i€;s,/n. Where €, is the Levi-
Civita antisymmetric permutation symbol for any j.k
=1,2,3. The required solution of Eq. (7) is

Ut.1p)=e®/1exp[ = iAD(J, £ al5)]e "% (8)
This can be easily verified with the aid of the relations
eM2J e~ ™Ma=J, cos A +J;sink,
eM1Jye"Ma=Jycos A= J, sin X,
eMiJe" ™M= cos A+, sin,

which are derived from the basic identity

A A2
eMBe~M=pB+ F[A'B]+ E'-[A'[A_B]].q. P 9)

and the above commutation relations. The net polar angle
A® swept during the collision between 14 and ¢ is & — P,
The initial condition U(zq.20)=1 is automatically satisfied.
If no cutoff radius is considered, ®y— 7 as 7p— —= and
& -, (the classical deflection angle) as t—=. For the
simplest case of distant straight line trajectories ®5=0, and
the evolution operator is then

U(oe, —o)=explim(J, = al;)]e” ™

or, in terms of finite angle rotations R{¢,n] by angle ¢
about direction n and the parameter y=yl +a*‘, is

U(»,—®)=R{ - ym,(1/7.0,2a/y)JR{m(1.0.0)].

II. QUANTAL THEORY

A. Quantal intrashell dynamics

The Schrodinger equation for the time evolution operator
U(t,1p) is

U
ifz7=(Ho+V)U. (10)

where H, is the free atom Hamiltonian and V' is the interac-
tion potential (3). If the projectile is moving sufficiently
slowly, adiabatic perturbation theory can be aj;plied and then
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the whole dynamics of the target atom becomes restricted to
the initial degenerate energy shell (the orbital adiabatic re-
gion in Fig. 3). This simple fact has two major consequences.
First, the position operator and hence the perturbation poten-
tial (3) commute with the unperturbed Hamiltonian, as one
can prove directly from the matrix elements of the commu-
tator [r.H,] between any states within the energy £, shell.
The potential in the interaction representation

VI= PlHL«l/fl Ve-lHo!/ﬁ

is then identical with the utential in the Schrodinger repre-
sentation (V,=V), and the equation to be solved, in the in-
teraction representation, is

8,
Ak —==VU,, (11)

where U (t,to) = exp(iHp/R)U(t.to)exp(—iHpto/R). Second,
the components x,y,z of the position operator do not com-
mute between themselves when restricted to the energy shell.
This follows from the well known Pauli *‘replacement’’ [23]
r——3nA/2 (see Appendix A for details). This shows that
the position vector r behaves, within the intrashell dynamics,
like an angular momentum and is denoted by {r} when op-
erating only within the n-shell. In fact, the set of operators
{L:,—2{y}pa/3.,—2{z}p,/3} generates a rotation group and
Egs. (11) and (7) are identical when J,=L,, J,=
~2{y}pa/3 and Jy=—2{z}p,/3. Using the solution (8) of
Eq. (7), the exact solution of Eq. (10) of Sec. II for the
evolution operator, within the adiabatic approximation, is
then

e~ i®ol1/h

(12)

A ' 2
Ult.tg)=e'®tr/h cxp[ - ;';Afb( L- -;-pu{z})

This can also be directl= verified by substituting Eq. (12) in
Eq. (10) and using Eq. (¢, with the appropriate commutator
algebra. ’
The transition probability for a general i— f transition at
time ¢ is
ap()=(PAr.0)|Wi(r.0))m(DLr.0)|U(t,10)|¥i(r.to))
=(@ANNU1.10)| $i(r)).

where ¥, is the target wave function, which tends in the
asymptotic limits (— =) to the unperturbed basis set
®(r.)= @;(r)exp(—iEg/k). The transition amplitude for a
Stark mixing process is

a§)=(nB|U(=,~=)|na), (13)

where the initial state i=|na) at t=— evolves to the final
states f=|nB) at t==; a and 8 now label the states within
the same energy shell. The superscript n will be omitted,
since all dynamics is restricted to the energy shell described
by quantum number n. When a and B label states with a
given magnitude and projection of the angular momentum,
the transition amplitude is given by Eq. (12) in Eg. (13) and
is feasibls and efficient for practical numerical applications.
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The core of solution (12) is the exponential of the opera-
tor L, ~2ap,z/3. By using basic commutator algebra and
Eq. (9), this operator is diagonalized as

il 2a
e™ LLI_ Tpn{:})e"""‘= Ly,

where g=2p,arctan(a)/3 and y=vyl+a". The solution
(12) has therefore the alternative form

U (t.10) = i®Ly Ay =ilylalh = 17a0L, m'e}(y)qme - Ly ik
(19

which illustrates very effectively how the action of the slow
distant encounter charged projectile coming from the nega-
tive z axis is decomposed into successive rotations about the
x axis and alternating impuisive momentum transfers (=gq)
along the y axis.

It is interesting to compare the solution (14) obtained in
this orbital adiabatic limit with the purely impulsive solution
presented in sec. II C. The evolution operator (14), for un-
deflected collisions, yields

Ul(w,—‘”) = e-i{y}quierllﬁei(y}qu-iwL,/l"

In the limit that a—0, g—2ap,/3=Aql2 and
exp(imyL,/k)—exp(imL,/R). Then

U[(w._w)
[ (=0 [(}Ag) (=2 ({y}aq)? in
—[H I ( 2% ) 2! ( 2 )+ e
i ({y}Aq) i*[{y}Aq\? —int,
x1+l_!'( R )+§_'( % )+...e L/ﬁ'

which reduces, with the aid of exp(inL, /R)y" exp(—iwL,/h)
=y"(cos m)"'=(—y)", to

Uy=e 240V 4 0(a?). (15)
This limit merges with the impulsive result Eq. (20) below.

B. Formal development

It is interesting, however, to note that by introducing Pau-
li’s replacement directly in the potential (3) and by writing
the Runge-Lenz vector as A=M-—N, the potential decom-
poses as

V=V +Vy,
where
V= —a(M;sin®+ M, cos d)d
and
Vy=a(N, sin®+N; cos d)d.

Because the commutators [M; ,N;]1=0, [M;.H,]=0, and
[N;.Ho]=0 (for any i,j=1,23 combination), the problem
(10) becomes separable, exactly in the same way as the clas-
sical Stark mixing equations become decoupled (see the next
section). The time evolution operator then factorizes as
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TABLE . The four bases useful for describing the quantal states of the hydrogen atom.

Basis Quantum Complete set of Origin
numbers commuting observable
orbital Iném)o Ho. L3 Ly Standard for spherical coordinates: describes
correctly the states of the field-free atom
parabolic inyn,m)p H, . H,. L, Separation of Hamiltonian H=H,+H; in
parabolic coordinates, {=r+z, n=r—z:,
tan p=y/x; n=n;+ny+|m|+1
Stark ingm)s Hgy. A3, Ls Parabolic basis: describes the Stark states for
: small electric field £, when the interaction
—e&z is diagonal: g=n,—n,
algebraic lnuv), Hy, M3, Ny The two rotation groups in which the dynamic
symmetry group SO(4)=S0(3)®S0(3)
- decomposes using Eq. (2): the equivalent
o angular momentum for both SO(3)
representations is j=(n=1)/2; p=(m +q)72 and
v=(m=q)2
U UHOUMUNv (16) F(a)=DU)[-7‘ﬂ"(‘ly'-0v" -‘;)

where, of course, U H°=cxp[-iHo(l—to)/ﬁ], and Uy and Uy
are the solutions of the equations iU, /dt=Vy,Uy and
ikhdUylot=VyUy, respectively. Using the group-
theoretical result Eq. (8) of Sec. II, the solutions for the
operators Uy and Uy are then

UM=8'°M‘M exp[-i/ﬁ(¢—¢o)(M,-aM3)]e°‘°°”l'“
(1n

and

Uy=e'®N 1 Rexp[ = ilh(D = Do)(N) +aN3)Je o172,

(18) )

In cuculating the amplitude (13), four interesting basis
sets ca~ ve chosen for the one ele~iun hydrogenlike atom.
Table I summarizes key properties of these bases. The orbital
basis is useful for describing the field-free atom, before and
after the collision, whereas the algebraic basis appears natu-
rally as a basis where M3 and N are diagonal. The solution
(16) has the simplest expression in this algebraic basis. All
four bases in Table I span the n? degenerate energy shell and
can be equally adopted to characterize the hydrogen atom.
The algebraic basis spans a tensorial product of two spaces
(|£)®|v)) corresponding with spaces used for a matrix rep-
resentation of the product SO(3)®S0(3). The two spaces
have the same dimension because M2=N2=(L?+A%)/4
=(n%-1)A%4 and are associated with two angular mo-
menta with j=(n-1)/2.

The transition amplitude between the two algebraic states
is then the product of two amplitudes for M and N indepen-
dent actions. exactly in the same way in which the classical
M and N vectors evolve independently in time, ie.,
@(u' ') (uwy=Bu w8y v Each factor is the matrix element of
a j=(n—-1)/2 dimensional representation of the rotations
represented by Eq. (16). For example, from Eq. (17), one
gets a, ,=Fuu(a) with

DY[m,(1,0,0)],

where D[ $,(n,,n3,n3)] is the Wigner matrix representation
for the rotation R #,n] by angle ¢ about direction n (see
[24] for the explicit expression). The transition probability in
the space of N is the element »' v of the matrix F(—a).
Calculation of the transition probability between orbital
states requires the explicit unitary transformation between
the orbital and algebraic bases. This can be obtained by di-
rect scalar products of orbital and parabolic states for which
explicit coordinate representations are known. The result can
be written in terms of hypergeometric functions [25]. How-
ever, an equivalent result is provided by the SO(4)
~S0O(3)®S0(3) isomorphism. The orbital state, as a com-
bination of two angular momentum states, is (see [26] for

" example)

J
In/m)=“ vz__j CYMInuv),

where the transformation matrix C™ is given by the stan-
dard Clebsch-Gordan coefficients (jujv|Zm). The transi-
tion amplitude for the Z/m—/"m’ transition is then

Cpmim= D CYUmICUMF y(@)F (= a),
[ odd (19)

which can be expressed in matrix form as
apim sm=THCY " IF(= a)CYTFT(a)],

where CT is the transpose of matrix C. The above result Eq.
(19) is in exact agreement with the solution obtained in'
{12,15,16] using the rotating frame approach. The quantal
development here in the fixed frame is exquisite in that it
follows exactly the same reasoning basic to the exact classi-
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cal mechanics solution (Sec. IV A). This result exhibits the
essential power of the SO(4) symmetry group for the energy
shell of the hydrogen atom. The common SO(4) symmetry
therefore transcends the chosen formulation (classical or
quantal) and provides a classical-quantal correspondence at a
level more fundamental than Ehrenfest's theorem and the
Heisenberg correspondence. In practice, the fourfold summa-
tion (19) and the use of the Wigner rotation matrices D for
F(a) are not very efficient and the difficulty of calculation
increases dramatically with n. Instead, the solution (12} .ro-
vides a simpler approach, since the matrix elements of the
argument in the exponential have simple expressions Zicectly
in the orbital basis. The array of transitions is obtained at
once, within one matrix exponentiation of a band diagonal
matrix for which efficient algorithms are available [27].
When the projection of the initial and final angular mo-
mentum is not determined, the transition probability is

Poa)=

2 ‘E |a/’m’./m|2'

2/+l

The exact quantal solution can therefore be derived di-
rectly without making use of unnecessary complications of a
rotating frame and a fictitious magnetic field. The structure
of the present solution Eq. (14) represents a sequence of
alternating momentum transfers (in the y direction) and rota-
tions about the x axis. This recognition motivates the follow-
ing section.

C. Impulsive limit

In the other extreme situation (the orbital sudden-Stark
sudden region in Fig. 3, where a<¢1), the impulsive limit,
the collision is very fast and the collision time 7, is much
smaller than the orbital time. The potential has again ‘he
same form in both Schrodinger and interaction repr .cnta-
tions, V=V,, since, in the equality (f]V|i)m(f]V:}. s,
the exponent wyt<€1 [with wg; = (E;—E))/A] can ‘be re-
placed by zero. Now the position operator has r the normal
behavior, in that its components commute between them-
selves. The impulsive transition amplitude is

ag’= (d’,(r)lexp--f V(rt')de'|#,(r).

as may be directly verified upon using the closure relation.
Since the force F= =V V(r,r) acting on the Rydberg elec-
tron is impulsive and imparts momentum Agq, then

 frmm i ®
exp— i—f V(r.r')d:’=exp—;j dl“J F(r,t)d?

0-—:
i
=exp— qu-r

so that the probability amplitude for an impulsive collision is
simply

PHYSICAL REVIEW A 63 032701

ag’(q)= (tb,lexp——-lq rl ). (20)

the inelastic form factor amplitude. This agrees with other
alternative derivations [28.29] for the probability of an im-
pulsive transition. The momentum transferred in an (impul-
sive) rectilinear collision is

Aq=(2Z,e*/bv)y=(4ati/3nay)y.

The transition amplitude, valid in the orbital and Stark sud-
den region (cf. Fig. 3), is therefore

o day
a}.°(0)=(¢f|cxp"l§;;‘(;105,-).

which connects with the @—0 limit Eq. (15) of the adiabatic
result Eq. (14). Even though this approximation is appropri-
ate for the amplitude for transitions n—n'Z" between dif-
ferent energy shells, it is a good approximation, in particular
for very small a [see Eq. (15)], if the normalized

P'”“lagl?lz/z Ianmp

transition probability is adopted for the problem of intrasheli
transitions. This normalization is a consequence of the dif-
ference between the operators {r}, appropriate only to in-
trashell transitions, and r for all transitions.

IV. CLASSICAL THEORY

A. Classical intrashell dynamics

The angular momentum vector L and the Runge-Lenz
vector defined by

r -
A=p ! pr—m,ez-;]
are constant for the unperturbed classical Rydberg atom.
Moreover, A-L=0 and A2+Lz=m,a,-nzfl2 In the pres-
ence of an electric field of intensity £, the angular momen-
tum L changes at the rate

- -

—_—=—erXE.
’h erxXé&

On assuming that the collision is orbital adiabatic (b<tw,

and £ is constant over one period), the slow change of L
during the collision is the classical average

AL_ dL _ eJ‘u—rlz - _ XE
—=l= T_-- - (rx&)di=—e(ryx&(1)

over one orbital period T. Since the weak-field approxima-
tion (wg<w,) also holds, the vectors L and A then change
very little over one orbital period. Using Pauli’s replacement
rule (r)~—3A/2p,, the following set of coupled equations
can then be deduced {9,22]:
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M(t) = T y(t.£0)M(ty) and a similar equation holds for the

dA . ~

— - x — = — . .

d: wsRXL, dt wsRXA. time evolution of N. The first equation in Eq. (22) becomes
where both ws=a® and R vary with time. Under the sub- au;; P—
stitution rry @€, RaUy;.

_L+A

M= -5 T (21

the above set of differential equations becomes decoupled to
yield

where €;; is the fully antisymmetric permutation symbol.
Because the infinitesimal generators 7, for the rotation group
arc matrices with elements (J,);;= — €;;; (see [30] for ex-
am;i2) and,since R=(0.sin ®,cos ), the above equation in
matrix form is

M RxM aN +wsRXN (22)
—_=-wg " —_T = Twg ’ dﬁ -
dt dr —E%=-a(sin<b72+cos<b73)uu.

where the magnitucies*M2=N2=(L2+A2)I4=n2ﬁ2/4 re-
main constant throughout the collision. The classical analysis
for constant electric fields is given by Born [9]. For time-
independent wg, both M and N precess with constant fre-

quency wg about the (fixed) direction of internuclear axis R.
For general time-varying wg, the system of differential
equations (22) does not have an exact solution. Percival and
Richards [22] have used classical perturbation theory to
solve Egs. (22) and then provided a diffusional theory of

where [7,.J}] =.¢,,-,,.7,,. This equation is the matrix represen-
tation of the group equation (7) and the solution Uy is the
matrix representation of the general solution (8). The final
vector M is therefore obtained from the initial vector M by
three successive rotations, -

M’ =R[-®,(1.0,0)]R[ yAD,(1/7.0,— /)]

angular momentum mixing. Bellomo er al. {17] approached X R[®,(1,0.0)IM. 23
the same problem by proceeding via the time evolution . L.

propagator UZ(t,¢0) for M and N in the rotating frame, an The solution for N has the similar form

approach that results in formulas too complicated for physi- ' = Pf —

cal changes AL and AA to be extracted. A special solution N'=R{-®.(LOO)JR[ya®.( 1/7.0.+al)]

for transitions from angular momenta state Z=0 has been X R{®Dy,(1,0,0)]N (24)

recently obtained by Kazansky and Ostrovsky [13-15}

An exact analytical solution is, however, possible under
the weak field and orbital adiabatic approximations for a
classical projectile trajectory and when the magnitude of vec-
tors M and N remains constant during the collision, as for
the present case of intrashell transitiuns. These vectors are
then obtained at any moment by orth-gonal transformations
from the initial values M(t,) and N(to). Let these transfor-

mations be Ty(1.t9) and Up(t.tg), respectively. Then

obtained simply by replacing a by — a in the corresponding
equation for M. The matrix R[®.n] is the rotation matrix
for a vector and corresponds with the representation of the
abs\tr'ct rotation (specified by the angle & and the direction
D f rotation) on the three-dimensional vecior space. Analyti-
ce} expression for Uy and Uy can be obtained [31] as ex-
plicit functions of a and A®. In particular, when =0 and

®o=, the (3% 3) matrix T is

_
y Y 1+atcos(my)] ay 'sin(my) ay 1 -cos(m )]
Ux= ay~!'sin(7y) ~cos(my) -y !sin(my) (25)
ay Yeos(wy)=1] ¥ 'sin(my) —vy Ha’+cos(my)]

and O is obtained from ' by replacing a with —a.

As a result of the collision, the initial state of the target atom, specified by the vectors (L,A). changes to the final state

(L',A") according to

L'= 3 L+ 3 A, (26)
o,-U O,+0
A= "'2 ML+ ”2 u @n

For the undeflected trajectory of the projectile, when ®=0 and @, =, explicit results are:
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Li=y [1+a*cos(m y)]L,+ay ' sin(m y)A,+ay [1=cos(m y)]A;s.

Ly=—cos(m y)Ly— ¥ 'sin(m y)Ly+ay”

Usin(m y)A,,

L=y 'sin(m y)L,=y *[a*+cos(7 y)Ly+ay *[cos(m y)=1]4,. (28)

A=y Y1+atcos(m y)JA, +ay 'sin(m y)La+ay *[1—cos(m y)]L;.

AS=—cos(T y)A,— vy~

sin(7 y)A;+ay”

Ysin(m y)L,.

Ay=y " 'sin(7 y)A,— y.‘z[a2+cos(1r y)JAs+ay Y cos(m y)-1]L,.

Here y= y1 + a° and-the components of the initial and final
vectors are defined in the fixed coordinate frame of Fig. 1.
Similar expressions have also been obtained [31] for general
Ad. The above exact solutions are easily verified and satisfy
the invariant relations

L'-A'=L.-A=0
and
L'2+A'2=L2+A?=n2,

The orbit of the final state (n,L’) is confined to a plane
perpendicular to the final L’ and the energy is preserved (n
is not changed).

B. Classical transition probability

The initial state is defined by the angular momentum L
and Runge-Lenz A vectors. Apart from the constraints that
(i) the magnitude of the L vector is Z&, (ii) the magnitude of
the A vector is & yn?—Z7 in the given state, and (iii) L and
A are always orthogonal, the two vectors are completely ran-
dom in the six-dimensional space {L}®{A}, which is a map-
ping of the usual (r,p) phase space. The initial angular mo-
mentum can have any value between 0 and nf. The special
case of zero initial angular momentum requires a separate
analysis, presented at the end of this section. In the following
discussion, the initial angular momentum is assumed strictly
positive.

The hypersurface in the {L}®{A} space on which the
initial state is uniformly distributed is restricted by the above
constraints and has the volume

v,,=f J S(L|-42)&(|A| -k ynT=Z7) 5(L-A)dL dA,
(29)
which, upon integration, reduces to
V,,=8mhi/\ni=- 7"
Each point within this manifold evolves during the collision

according to the rules (28), so that only a fraction of possible
initial states can have the final angular momentum #' after

-

the collision. Following the definition (29), the overiap vol-
ume of accessible (L,A) space that contains both initial and
final states is

Vus= [ [ &L= B KL =2 B 1A -8R

X 8(L-A)dLdA. | (30)

The transition probability is then, in a geometric sense, the
ratio of two volumes: the volume V, .+ of the accessible
states compatible with the required final angular momentum
and the volume of the acceptable initial states V,,. The /
— /' transition probability is therefore defined as thé ratio

3D

of phase-space volum.2s. Transformation to the alternative
set of vectors M :_id N defined by Eq. (2) facilitates evalu-
ation of the integm=. {30). The Jacobian of this transformation
is dL dA=8 dM dN. With the aid of the identities

S(L-A)=8M*-N)=8N-M)2M,

S(|L| - Zh) = S(VZMH(1 + cosZ MN) — /)
= 8(cos MN— (A ’M? = 1))/ hIM?,

6(|A|—ﬁdn2—7z)=5(\/2Mz( 1 —cos< MN) = A yn‘=£7%)
= A= 7RI -haT=77)
=§M-nkR)h \/n2—7!/4M,

S(IL'|=Z'K)= 8(V2M*(1 +cos< M'N’) = /' K)
= 8(cos M'N' = (Z' K2 2M2= 1))/ hIM?,

the accessible phase-space volume is
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vn,,.=f JSMZdeQMdQNdeN

SN=M) n—1?
X ]

£k
S(M-nhl2)—
MZ

2M M
(‘ﬁﬁz ) 'k
X 8l cosL MN—| ————1||—
2M? M?

/lZﬁZ
X cosLM'N'—(-——— l) .
2M?

This finally reduces to the simpler form
vhn ‘E»-- p
V,,/,,=——2——4//’ﬁf J’dn"an
n

X 85(cosL MN=B)&(cosL M'N' = £

where the integral is now over only the angular part of the
vectors M and N and where the parameters B and B’ are
simply related to the initial and final states by

22 272
B=—-1, B'=—-L (32)
n n

The final vectors M’ =0U,M and N'=0TyN are given by
finite rotation [Eqs. (23) and (24)] of the initial M and N, so
that the relative angles ZMN and £M’'N’ are independent
of the specific coordinate frame chosen. Then

M'-N' (TyM)-(OWN)

cosLM'N' =

M? M?
(OTLTOuM)-N
=M =cosZM"N,
M2

where M” is obtained by rotation from M using the operator
0L, . Being a product of two rotations, this operator is
also a rotation about some direction » by the angle x deter-
mined from the trace

T T 0] =1+2cos x

of the rotation operator. The proper rotation angle x depends
only on the collision (Stark) parameter & and the polar angle
A®=®—d, swept out during collision time interval (fo,1)
and is independent of the initial or the final state of the Ke-
pler atom. It is determined by

cos§=[l+az cos(VI+a?A®))/(1 +a?).

For small a<tl, cos y~1—8a?sin}(Adr2)+ O(a’) so that
x~4asin(A®r2)+ O(a’). The plot Fig. 4 of the “‘univer-
sal’ function x(a,A®) for the case AP = — 7 shows that x
has a maximum at a~0.9 and is never greater thzn 7. When

PHYSICAL REVIEW A 63 032701

‘ i -
xim AP =3t 0 =nn2
0.8
0.6
0.4
0.2 . -
', /
//

¢c.0 0.2 0.4 0.< 0.8 T o

FIG. 4. The proper rotation angle x as a function of the Stark
parameter  for the net polar angle swept Ad = -m =374,
- /2, and — /4.

Ad =~ —3 /4, the angle y increases up to  as a increases
to unity. For smaller values of A®, the angle x increases
monotonically with a.

The classical transition probability (31) is then

p),e—— [ [ a0, a0
YT yadkn? METEN

X 8(cos MN— B) 8(cos M"N—8'),

where the angle between M and M” is x. The d{} integral
can be done first if one chooses to work in spherical coordi-
nates with the z axis along the vector ». In doing this, the .
vectors M and M” are fixed and have the coordinates (8,0)
and (O, ) as depicted in Fig. 5. The surface area clement is
dQy=d(cos 6)d¢, where 6 and ¢ are the spherical coordi-
nates of the vector N. Instead of the (6,¢) system, a new set
of coordinates can be defined by (u,,u;), the angles of N
with M and, respectively. W". The surface area element is
nuw d)y=du,du,/sin A, ~aer., A is the angle between the
NMi-and NM” arcs, as in Fig. & A proof of this result is
derived in Appendix B.
The dQ1 integral is now simpler to evaluate and yields

Va

FIG. S. The geometry and coordinates used in solving the inte-
gral (31).
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A . : -
Pss= d(cos ©)(sin A sinu, sinuy) ",
whn?l -1

where cos u;=2/%/n*— 1, cosu,;=2/"'*/n*~ 1, and the fac-
tor 2 arises because the (8, &) —(u,.u,) transformation is
not single-valued.

Basic trigonometry (see [32]) applied to spherical triangle
MNM" yields

cos "= cosu, cos u,+sinu, sinu,cos A
so that
sinu, sinu,cos A=(cos_—cos [(cosT=cosT ),

where I =u, > u, are the limits to I' as A rotates through
2. Since

cos'=cos ©2+sin©®%cos x
for spherical triangle M¥M”, then
sinu, sinu, sinA=(1—cos x)[(cos?® — A)
X (B-cos2©)]'?,
_J

0

27! 1

P(,",),( X)=

provides the exact classical probability as a funetion of Z,
/', and sin? x/2, which combines the Stark parameter a
=(3Z,/2) (a,v,/bv) and the net polar angle swept during
the collision A® into one function. The probability (34) sat-
isfies detailed balance 2P, ,=27"P /1, where 2/ is the
classical weight of the state nZ.

Inspecting the definitions (33) reveals more qualitative as-
pects. First, A and B are always less than 1, and only B can
attain | when u, =u,, i.e., for elastic collisions /=/". The
transition probability reduces, for this case, to the simpler
form

1
J 25 T N | ) P ————
rAa ) da Ty

in the limit of small a, thereby exhibiting the 1/a singularity
of elastic transitions. For transitions with #’'#/ and small
enough a, the factor B is negative and then the transition
probability is zero. B is always greater than A because
cos(u, — up)>cos(u; +uy). In the limit of each # and /' —0
or n, then u; ;=0 or = and A=B<1. For /—/'=0 tran-

B
K(B—_—A)/\/B—A if B>0, A<0
mwhn? sin’x/2 (B—
K\—3

A)/JB if B>0, A>0

PHYSICAL REVIEW A 63 032701
where

cos(u) +uas)—cos y
1 —cos x

A(ZInA Inia)=

B(//n'/'/ma)zcos(u,—u:)—cosx‘ (33)
l—cos x :

On denoting cos © by z, the transition prt-aoility is the
one-dimensional integral

2 J' dz
~ahn? Lmcosx) (- A)(B-)

PO AX)

where the limits of integration are defined by the
condition of reality for the square-root function. The
last integral can now be expressed .in terms of the
complete elliptic integral K(m)=[§"(1 —m sin?x)™"dx so
that '

if B<0

(34)

sitions, the probability is zero. For the importan* “ase of zero
initial angular momentum, the transition prubaoility P in the
limit of /—0 is

Z'1(kn?)

PO (a)= :
#ol@) sin( x/2) Vsin®(x/2) = (£’ In)*

(35)

This result was also obtained in [14]. When Z’ =n, the tran-
sition probability is ‘

1/(kn)
sin(x/2) V(ZIn) =sin’(x72)

P(a)=

When the argument of the square-root function is negative,
the transition probability is zero. Similarly, for maximum
initial angular momentum #=n, the transition probability
has the limit ‘ :

Z'I(hn?)
sin(x/2) (7' /n)? = sin’(x/2)

P(;')n(a)=
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a=0.2

I/nt;

0
0 0.2 0.4 0.6 0.8 1

l/n
l/n1 1 ___a=08

! T -

’ A>0
0.8 0.8t A<O
0.6 0.6 B>0
0.4 0.4 A>0
0.2 0.2

0 0l

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Un

where, again, the transition probability is zero unless the close to unity, the transition probability has the following .

[N}
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FIG. 6: Contour plots of the solutions of A
=0 (solid line) and B=0 (dotted line) for various
values of a. In gray zones 8<O0 and the transi-

tion is classically forbidden.

final angular momentum /' is large enough to make the expansion for small A:

argument of the square-root function positive. If 5>0 and A
is small, the transition probability has a singularity, typical
for classical mechanics. Because the complete elliptic X
function diverges logarithmically when the argument is very

I/n=0.071
1.0 1.0
0.8 0.8
0.6 0.6} -
r'/n ;
04 0.4
02 02
0.0 0.0
00 02 04 06 08 10
I/n=0.64
1.0— / —_— 1.0
B,
08| 08 A>0
A<O
061", 0.6
r /n '.. B>0
04] 04
.
0.2 3«%\ A>0 - 0.2
N e oy
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FIG. 7. Contour plots of the solutions of A
=0 (solid line) and B=0 (dotted line) for various
values of 7. In gray zones B<O and the transi-

tion is classically forbidden.
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When B has small but positive values, the transition prob-
ability has a finite limit because K(0)=m/2. Of course,
when B approaches zero from negative values, the transition
probability is zero. Thus, the singularities in the transition
probability are given by the solutions of the equations A
=0 and B=0. which are u,==u, = y.

A map of the various zones in the plane of reduced initial
and final angular momenta (#/n.#"/n) is displayed in Fig. 6
for the four values a=0.2, 0.4, 0.6, and 0.8 of the Stark
parameter. In the central region, A is negative and B is posi-
tive. Within the lower left and upper right comers, both B
and A are positive. The transition is classically forbidden in
the upper left and lower right comers (gray zones) where B
<0. Along the solid line, A=0 lines, which represent
cos™ " (ZIn)+cos”(F4n)=x/2,m2—~x, the transition
probability has a logarithmic (cusp) singularity. Across the
dotted B=0 lines, which represent cos™'(Z/n)
—cos~!(#'In)=x/2,m—x/2, the transition probability
jumps from zero (in the gray zone) to some finite value (in
the central zone). As a—0, the two inaccessible regions
(where B<0) increase until the central region with B>0 and
A<O0 becomes an elongated line strip lying along the diag-
onal #=/". Only elastic collisions are therefore permitted
in the limit a—0. As a increases to unity, the classically
forbidden zones diminish and the collision becomes more
and more effective in its ability to induce larger angular mo-
mentum changes.

Figure 7 presents corresponding maps to Fig. 6. The same
characteristic regions are now displayed in the plane of final
reduced angular momentum #’'/n and the Stark parameter @
for four values of the initial reduced angular momentum
ZIn=0.071, 0.36, 0.64, and 0.93. Again, the classically for-
bidden regions (gray zones) correspond to the condition B
<0 in the left upper and lower comers. The elastic =0
transitions are always possible, even when a—0. Again,
along the solid (A=0) and dotted (B=0) lines, the transi-
tion probabilities have cusp and step singularities. When a
increases, the span of the possible final angular momentum,
for given angular momentum, increases. Large angular mo-
mentum transfer is only possible for collisions with large
Stark parameter a— 1. Both Figs. 6 and 7 are key to the
interpretation of the variation of the probabilities P/ A a)
with both /' and a, respectively.

The result (35) obtained from the Z—0 limit of the gen-
eral result (34) can be also proven directly. Because L=0,
the classical orbits are characterized only by the Runge-Lenz
vector A. In this case, the volume occupied by the initial
state is :

Vo= f 5(|A|-nh)dA=4mnh.

The volume of the accessible final states 2’ is

1
vnO/'=j 5(|A|‘nﬁ)5(5

where the orthogonal matrices Uy n depend only on the
Stark parameter a and are defined by Eq. (25). In a spherical

(Tu-OwnA —/'ﬁ)dA,
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FIG. 8. The geometry of the initial state described by the direc-
tions of the angular momentum L and Runge-Lenz A vectors.

coordinate system where the z axis is along the principal
direction » of the rotation matrix U T, (as discussed earlier
in this section), the magnitude is

1 _ -
§‘|UMA" UnAl=nhsin(x/2)sin 8, .

where @ is the angle between T A (or TyA) and the direc-
tion ». The transition probability is then

k4
Pro=1% Io S(nhsin(x/2)sin 6— " h)sin 646 -

_ Z' I(hn?)
sin(x/2) Vsin?(x/2) = (7" In)T’

in agreement with the Z—0 limit (35) to the general classi-
cal Z/—/' wansition probability (34).

V. CLASSICAL DYNAMICS SIMULATION

The present classical Monte Carlo simulations are differ-
ent from the standard classical trajectory Monte Carlo simu-
lations in that the initial state is not specified by the position
and the velocity of the orbiting electron. Instead, the simula-
tion begins with a random distribution of the initial states in
the {L}®{A} space, propagates each state according to the

rule (28), and then performs the statistical analysis of the

final distribution of states to provide, in the limit of an infi-
nite number of trials, the probability P, for a given tran-
sition. This section describes the correct way to generate the
initial distribution of states.

The angular momentum L and the Runge-Lenz A vectors
are sufficient to completely specify all characteristics of the
atom's orbit, provided they are orthogonal, as for the case of
pure Coulomb attraction. Only five components are therefore
independent and two of them, the magnitudes L and A
= \/n;—Lz. characterize the shape and size of the orbit.
There are then three angles that specify the orientation of the
orbit in space, for a given assignment of the energy and
angular momentum. The direction of the angular momentum

vector L is arbitrary. Two random numbers, the projection '
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L.=cos §, and its azimuthal angle ¢,, generate a uniform
distribution of L on the unit sphere. The direction of the
Runge-Lenz vector A is uniformly distributed in the plane
perpendicular to L. and the angle ¢ between A and a given
fixed direction N in this plane is the third random number
required to simulate an initial state. In summary, three ran-
dom numbers are required: (i) L.=cos 6, uniformly distrib-
uted withia the [ — 1.1] interval, (ii) ¢, uniformly distributed
within the [0.27] interval, and (iii) ¢ uniformly distributed
within the [0.27] interval. The initial L and A vectors are
then

sin 8, cos ¢, sin §,c0s ¢;
L=#/| sinf,sin¢gq |, . A=A yni—7Z2| sin;sin e,
cos 8, cos 8,

The spherical polar angles 6, and @, of A, as illustrated in
Fig. 8, must now be expressed in terms of the above random
variables 8,, ¢,, and ¢. Basic trigonometry {32] applied to
the spherical triangles ZNA and LZA yields

cos 0, =sin ¢ sin 6,
and
0=cos 6, cos 6, +sin @, sin 8 cos(p2— @1),

respectively. On solving these two equations for 6, and @,
the arbitrary Runge-Lenz vector

A(8;.91.9)
—cos 8, cos ¢, sin ¢—sin @ COS ¢
=ﬁ\/77:7 —cos 8, sin ¢, sin ¢ +c0s ¢, COS ¢
- sin @, sin ¢

is then expressed in term of the random variables. It auto-
matically obeys the constraint requirements A-L=0, A?
+L%=n? and A-N=cos ¢.

V1. NUMERICAL EXAMPLES

In this section, numerical examples for calculation of the
transition probability between states with given angular mo-
mentum (nZ—n/') are presented. There are three main
methods used in this paper. The classical Monte Carlo simu-
lation, as described in the preceding section, requires the
running of a large number of trials to sample the three di-
mensional space of arbitrary parameters. The explicit classi-
cal mechanics expression (34) is used directly.

The quantal calculation is based on Eqgs. (13) and (12). A
matrix representation for the operator L, — aA; [where Pau-
li's replacement (5) was adopted] is required. Instead of the
spherical basis |#m), which is difficult to use in this case,
we define a new linear basis obtained by mapping the (I,m)
quantum numbers to a unique index k=/%+/+m+1, in
such a way, for example, that (0.0)—1, (1,-1)—2, (1,0
—3, (1,1)=4, (2,-2)—S5, and so on. The inverse map-
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FIG. 9. Matrix representation of L, — aA, for n=3.

ping is given by Z=floor(Vk—1) and m=k=-/2-/~1.
The index k counts the degeneracy of the energy shell, and
runs from 1 to n2. The matrix element

(L)om 24 ZFmIZ—m+ )67 /8 m

+EV(Z=mIL+m+1)871/0m! m+1

of L, is nonzero only for AZ=0 and Am= =1, which re-
flects the fact that the cylindrical symmetry of the Rydberg
atom is broken by the precession of L about the field of the -
projectile. These m-changing transitions are, however, con-
ditioned by the full structure of solution (12), which shows
that such transitions are only in evidence for nonzero a. The
matrix element

‘m' _ ( _MZ)(HZ_/2)5 »
(AJ)/M == (2/+l)(2/—l) /'~ 10m!.m
=i,
(27+3)(2Z+1) 07 ¢+1%m'.m

of the component A3=—(2/3n)z along the fixed Z axis of
quantization is nonzero for AZ= =1 and Am=0 transitions.
These dipole transitions only contribute for nonzero a. The
matrix L, = aA, has then a band diagonal structure, as illus-
trated in Fig. 9 for the special case of n=3. Explicit analyti-
cal formulas for Pf,", 'Aa,A®) can be directly obtained {33]
for small n=2,3.

The transition amplitude for transition k—k’ is the kk’
matrix element of the exponential of the matrix —iA®(L,
—aA,), sandwiched between the rotations implied by Eq.
(12). When a~0, the dipole forbidden transitions are not
possible, because the transition matrix ~expinL/k still
maintains a band diagonal structure. As a increases, more
and more off-diagonal elements become populated, leading
to dipole forbidden transitions. Efficient algorithms, using
Padé approximations, are available [27] for matrix exponen-
tiation. The full array of transition probabilities is then ob-
tained all at once. ‘
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0.2 A<0 (20)
| B0 P, (02)
B>0 X .
01 LA ]
0 ? A<0
05, 7 { ‘B
) B [ ) N H
0 5 10 15 20

FIG. 10. The Monte Carlo simulation (steplike lines), the clas-
sical (solid line), and quantal (dots) transition probabilities £+ A @)
for given @=0.2 and inftial #=4 within the n =20 shell.

The examples, provided by Figs. 10-13, demonstrate that
the Monte Carlo simulation yields results identical to the
classical dynamics expression (34). The transition probabili-
ties for given Stark parameters (a=0.2 and 0.6) and initial
angular momentum (£=4, 12, 14, and 18, respectively) are
represented as a function of the final angular momentum 7.
This also provides the distribution over the final angular mo-
mentum states, which result from collisions, at given a, from
an initial population of states with the same initial angular
momentum Z. In this example, n=20. The present corre-
sponding quantal results are also represented in the same
graphs by dots. Vertical dotted lines indicate the positions of
the singularities, corresponding to the A=0 and B=0 lines
in Fig. 6. The A=0 and B=0 singularities produce cusp and
step variations in P, as /' increases through the singular-
ity (Fig. 6). Four distinct and characteristic classes of varia-
tion of Py, with 7' then emerge. These are displayed in
Figs. 10-13, where the predicted (cusp.step), (step.step),
(cusp.cusp), and (ster usp) classical variations are exhib-
ited. These resuits are f.1ly representative and can be ana-
lyzed by vertical cuts through Fig. 6 appropriate to a given
7. The Z and a parameters in Figs. 10-13 correspond to the
values Z/n=0.2 and 0.6 and to Z/n=0.7 and 0.9 in the first

(20)
Pz' 12 (0.2)
0.1
B<0 B<0
0.05
" 0 . l,

0 5 10 15 20

FIG. 11. The Monte Carlo simulation (steplike lines), the clas-
sical (solid line), and quantal (dots) transition probabilities P /. A @)
for given a=0.2 and initial /= 12 within the n =20 shell. A<O for
all /.
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(20)
0.2
P1'14 (0.6)
0.15
0.1
A>0 A0 | ¢ A>0
0.05 \ A e '
L l’
0 5 10 15 20

FIG. 12. The Monte Carlo simulation (steplike lines). the clas-
sical (solid line), and quantal (dots) transition probabilities P, {a)
for given a=0.6 and initial /= 14 within the n =20 shell. B>0 for
all 7’

and third plots of Fig. 6, respectively. The steps indicate a
classical threshold 2" or a classical cutoff #7, for transitions
to a final value of #’. The cusp-step variation of Fig. 10
indicates that transitions to /' </, are classically allowed
and the step-step variation of Fig. 11 indicates that classi-
cally accessible ”’ are within the range 7. </'</", . The
cusp-cusp variation of Fig. 12 is associated with the fact that
transitions to all Z’ are classically accessible (cf. Fig. 6, plot
3), while the step-cusp variation of Fig. 13 signifies that only
transitions to /'3 /" are classically possible. For a given
initial angular momentum ¢ and Stark parameter a, the po-
sition of the cusp singularities, given by the solutions of the
equation A=0, is

/r. 172
(_;)=l(l—§:-) sin'-;-:(/)cos-;’-. (36)

n n

Expressions (36) are also solutions of the equation B=0 for
the step singularities. The threshold value Z_ is a cusp (so-
lution of A=0) provided Z<n sin /2 and is a step (solution
of B=0) provided Z>n sin x/2. Similarly, the cutoff 7, is

0.2
0.15
0.4 |B=0

0.05

i ’
0 5 10 15 20 l

FIG. 13. The Monte Carlo simulation (steplike lines), the clas-
sical (solid line), and quantal (dots) transition probabilities P A a)
for given @=0.6 and initial /=18 within the n=20 shell. Across
the first dotted line B changes sign and A is negative on both sides
of this line. A changes sign across the second line while B remains
positive.

032701-15




D. VRINCEANU AND M. R. FLANNERY PHYSICAL REVIEW A 63 032701
9.25}- =02 277 =02
0.2 0.1 *
5 15 0.08 Ao e
L ]

o1 oy 0.06f o

. . 0.04
0.05 * 0.02

® ) 9 ..‘

0.15
0.125 0.2
0.1 0.15
0.075
0.1
0.05
0.025 0.05

1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-A—.
0 5 16 s 20 25 7/ b 5 w 15 20 25 7

FIG. 14. The classical and quantal Stark mixing transition probabilities P, A a) within the n = 28 energy shell, for a=0.2, as a function
of the final angular momentum #' and for various initial angular momenta z.

a cusp if Z>n cos x/2 or a step if Z/<n cos x/2. The separa- /', . rd X
tion between the singularities is -\ =2(;) cos 3
(f;) _(i—_) ___2( 1- i:_) ”zsin X when Z/n<siny/2. The maximum separation of siny is at-
n n 2 tained at Z*/n=siny/2. This occurs in Fig. 6 where the
A=0 and B=0 curves both intersect the Z/n axis at £*/n.
when Z/n>siny/2, and is The transitions Z— /"' have significant quantal probabilities
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FIG. 1S. Density plots of the transition prob-

abilities, calculated within the quantal treatment,
for four values of a=0.2, 0.4, 0.6, and 0.8 in the
(Z.7") plane. The probability increases as the
gray becomes darker.

only when Z’ is in the classical accessible region and exhibit
the characteristic exponential decreasing behavior in the
classical inaccessible regions.

The second set of examples compares between the classi-
cal and quantal transition probabilities within the n=28 en-
ergy shell. A set of graphs, for various / and fixed Stark
parameter a=0.2, is presented in Fig. 14. The transition
probability is plotted versus the final angular me ientum.
The cusp-step, step-step, and step-cusp variations are ll ap-
parent, together with the superimposed quantai oscillatory
behavior within the classical accessible region. The oscilla-
tions possibly originate from the fact that there are two
points N of intersection of the two arcs (drawn on the sphere
of Fig. S) with centers M and M" with separation I'(a) and
radii 4,(#) and u,(Z"). Each point of intersection provides
equal classical contributions to P A a) while the different
phases associated with each point produce the quantal (semi-
classical) interference oscillations, exhibited in both the /’
variations of P A @) with Z and « fixed, as in Fig. 14, and
the a variation of P A a) in Fig. 16 for Z and /' fixed.
Figure 14 also illustrates that the separation (¢, —¢"_)/n
between the various discontinuities increases to sin x at
ZIn=sin x/2 and then decreases as Z is increased from 0 to
n—1, in accord with Eq. (36). In general, Fig. 14 shows that
the classical picture is complementary to the quantal in that it
has the ability to explain the general overall behavior of the
quantal results and to provide the general framework on
which the quantal results rest. It has also provided the vari-
ous regions (between cusps, steps, etc.) that remain obscured
within the quantal treatment.

The set of plots in Fig. 15 is the quantal correspondent of

the similar classical set of plots presented in Fig. 6. Density
maps in the (#,7") plane are shown for the same four values
of Stark parameter a. The first map for @=0.2 corresponds
to the results of Fig. 14, where cuts along various’ values of
Z/n are made. The quantal transition probability increases as
the gray areas becomes darker. The same zones outlined in
Fig. 6 can be recognized and the boundaries between them
are in exact correspondence with the classical equations A
=0 and B=0, as discussed at the end of Sec. V. The quantal
transition probabilities are practically zero over the classical
forbidden regions, occupying the upper left and lower right
comners of Fig. 6. The quantal probabilities are maximum on
the ridge given by the equation A=0, where the classical
dynamics results in singularities.

When a is very small, decreasing toward zero, only elas-
tic transitions are allowed so that only the principal diagonal
is exhibited, as in Figs. 6 and 15. The quantal calculation
yields unity for the probability of elastic #/=/" transitions in
the a—0 limit and the classical result diverges as 1/a in the
same limit. All other transitions have zero probability. This
feature is responsible for the well known [4] divergence of
the cross section (6) for elastic transitions.

Figure 16 displays the probability for transitions originat-
ing from the initial level /=5 to various final levels, as a
function of the Stark parameter a. Again, the agreement is
expectedly very good. For small a, there is always a classi-
cal inaccessible region (B<0) for quasielastic /' #7, ex-
cept for the fully elastic transitions /' =/. A threshold step
at a= ay is therefore displayed for the probability of transi-
tions with 7’ =/. This property is fully explained with the

032701-17




D. VRINCEANU AND M. R. FLANNERY

PHYSICAL REVIEW A 63 032701

0.175 =5 O ;:;55
0.15 =3 0.2
“azf 0.15
0.07s 0.1
0.05 0.05
9.025
0.2 1=5 0.14t ~
reg 012
0.15 0.1
q 0.08
c.2 0.06
0.05 0.04
0.02
0.14
0.12 =5 9.12
o1 =13 4,
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
0.15 gi;
0.125 o1
0.1 0.08
0.075 0.06
0.05 0.04
0.02% 0.0z} .
0.175 1=5 0.1
.15 U=23 o0.08
0.125
0.1 0.06 Lm5
0.075 0.04 U=25
0.05 o 02
0.025 y
0 0.25 0.5 0.75 1. 0 0.25 0.5 0.75 1.
Q a

FIG. 16. The classical and quantal Stark mixing transition probabilities P A @) within the n =28 energy shell, for /=5, as a function

of the Stark parameter a and for various final angular momenta /’.

aid of the plots in Fig. 7 of Z'/n versus a for various values
of Zin. As /' is increased, ar determined by the intersec-
tion of #’/n with the B=0 curve increases and a step (B
=0) to cusp (A=0) variation with a is obtained, as exhib-
ited in Fig. 16. For higher Z’'/n values, intersection with the
A=0 curve (and therefore the cusp) disappears. Figure 16
(for the specific n =28 case considered, or in genzral Fig. 7)
also shows that low Z— high /' and high /— low /'

transitions are precluded (B<0) except at high values of @

—1.

Figure 17 shows that the quantal probabilities are high in. -

the classical accessible regions (B>0) of Fig. 7 and are
more significant in the A<O region than in the A>0 region.
Variation of the transition probability along the horizontal
line for /' =const provides plots as exhibited in Fig. 16.
Figure 17 is the quantal correspondence of Fig. 7.
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FIG. 17. Density plots of the transition probabilities, calculated
within the quantal treatment, for four values of the initial angular
momentum #=2, 10, 18, and 26, in the (a,/’) plane. The prob-
ability increases as the gray becomes darker.

Figure 18 exhibits variation of the integral factor

1 da (7/:/ v 2
1(") _f P('l) 2( ) ,
Frmun D J ‘ﬂ'ai 3Zw,

which appears in the cross section (6) as a function of the
final angular momentum #’ for various initial angular mo-
menta Z. It is assumed here that A® = — . This integral
does not depend on the projectile properties (velocity, impact
parameter, or charge) but depends only on the ‘initial and
final state of the target. Due to the 1/a? singularity, the cross
sections for elastic (/=/") and near elastic transitions are
very much enhanced. Various cutoff (@p,) procedures can

]
10 Il’,s Il’,u I(:'x
10!
[ ] [ ] [ ]

1
10
102
10’
10° ¢

0 5 10 15 20 3,

FIG. 18. Classical and quantal comparison of the integral [,/
defining the Stark mixing cross section (6) within the n =28 energy
shell, for various initial angular momenta # as a function of the
final angular momentum /’.
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be introduced from physical considerations specific to the
actual problem discussed. For the results presented in Fig.
18, an arbitrary cutoff ap,,=0.01 was introduced for both
the classical and quantal calculations. With the exception of
elastic transitions, where special care must be exercised since
the present model fails, the agreement between quantal and
classical model is much better than one would expect from
the traditional correspondence principles such as Ehrenfest’s
theorem and Boh+',, correspondence. The exceptionally rich
symmetry group SO(4), characteristic for one-electron at-
oms in both the guantal and classical treatments, explains the
quality of the agreement obtained.

VII. CONCLUSIONS

In conclusion, we have presented a case study of the long-
standing problem of the n/—n/" transition array in atomic
hydrogen produced by distant collisions with slow heavy
charged particles. Complete formulations from the quantal,
classical, and Monte Carlo simulation viewpoints have been
developed. The SO(4) dynamical symmetry of H(n) has
been exploited to provide exact classical and quantal solu-
tions (28) and (12), under the adiabatic, dipole and classical
path assumpuons A classical expression (31) for the transi-
tion probability Py, P , is presented in a language that exploits
the dynamical symmetry and is used to obtain exact analyti-
cal results (34). A new exact (fixed-frame) representation Eq.
(12) of the quantal solution has also been presented and di-
rectly applied to provide exact quantal probabilities for the
full array of transitions. This solution is feasible for efficient
numerical calculation of probabilities for transitions involv-
ing even large n and all Z and /', in contrast to the previous
quantal (rotating-frame) version (15,16}, which was applied
only to the / 0— /' transitions. Exact analytical expres-
sions for P ¢ €« also be obtained [33] for low n.

The exact §~_..al results for P, oscillate about the clas-
sical background. By revealing csscnual characteristics that
remain obscured within the quantal treatment, the classical
results complement the quantal results. Further development
would include a semiclassical analysis capable of reproduc-
ing the oscillatory structure in the quantal Pf}',), without sac-
rificing the physical transparency of the classical model.

Although the numerical results presented here are associ-
ated with a straight line projectile path (i.c., A® = — ), the
theory is suitable for all polar deflection angles Ad swept
out during the collision by the classical trajectory. Specific
problems (nonhydrogenic atoms, stray fields, the Debye ra-
dius in plasmas, etc.) may impose further restrictions on the
range of impact parameter b, which results in restrictions on
a. The basic theory presented can still be applied to these
cases with minor adjustments. The classical trajectory appro-
priate to a rotating dipole can be determined to account for
the influence of the target on the projectiie’s motion.

In summary, both classical and quantal solutions of Stark

mixing have been presented in a compact form reflecting the
mathematical beauty of the problem as well as their prag-
matic value. It is probably one of the last remaining prob-
lems in collision physics capable of an exact solution.
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Note added in proof. A general concise analytical expres-
sion for the quantal probabilities P(,",’, for all n has since
been obtained [34] in a form (a) which is easy to use for
numerical evaluation, even at very high n~ 100, (b) which
yields compact analytical results for n=2-5 and (¢) which
naturally provides the classical limit (34) obtained here.
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APPENDIX A: PAULI'S REPLACEMENT

Pauli's replacement [23] for the classical one-electron
atom follows from the straightforward calculation of the av-
eraged projection of the position vector on the Runge-Lenz
vector,

3 é? 3 1

I NV DLy . S
(r-d) v-2m.E

2°2E 2
where € is the eccentricity of the orbit corresponding with
the energy E. Because the perpendicular component of ron
A averages to zero, the following rule is valid, on averaging
over an orbital period:

JA

r~—z—

2P

provided A does not change significantly in this time. Here

pa=\{p?)=V—2m,E is the characteristic orbital momen-
tum.

The classical Runge-Lenz vector has the symmetrized
(Pauli-Lenz) quantal form

1 .
A= E(pr—LXp)—m,ezr]/p,,

alternative to the form given by Eq. (1). The operator A has
the following properties:

(L; A=iheA,

(A Agl=ih€ Ly

(a conserved quantity),

(also a vector),

(its components do not commute),
A-L=L-A=0 (vector A is orthogonal on L),

A2+ L2=(n?-1)A% (constant for intrashell transitions).
These commutation relations define the SO(4) dynamic
symmetry group for the restricted motion of the orbital elec-
tron to the energy shell. The Hamiltonian H is an invariant
and can be used to label matrix representations for this
group. The correct energy levels for the hydroger atoms re-
sult from the symmetry without solving any differential
equation. The SO(4) operators can be disentangled by intro-

PHYSICAL REVIEW A 63 032701

ducing M=(L+A)/2 and M=(L—-A)/2. Each M and N
operators generate separately a so(3) subalgebra, such that
SO(4)=S0(3)®S50(3).
Following [26], it is useful to prove the following.
Resuls. The matrix elements of the operators {2 defined by

P — —
Q=r 27,
are Zero between any states wiur the same energy, ie.. £
=( within the energy shell.
" Proof. The commutator between the Pauli-Lenz vector
and the position vector can be written as

3 1
[Aj,rt]=— E-iﬁ‘jkﬂl’ﬂ*' 2—p—[m,H.rjrk-r25!k].
(Al

Because the commutator [H,X] is zero for any Hermitian
operator X, when restricted to the energy shell (the hyper-
virial theorem [35]), commutator (A1) is simply

N 3 ‘
[Al ,r,,]= - E;:'ﬁejlnl‘n

in the Hilbert subspace of degenerate states with the same
energy. Thus, the vector £ commutes with the Pauli-Lenz
vector and has the commutators

1
[MJ .ﬂ‘]=[N,- .ﬂ,‘]= Eiﬁcjknnn

with the vectors M and N obtained by decomposition (2).
With the aid of the basic Jacobi identity for commutators,

[A.[B.CI}+[B.[C.AT+[C.[A.BI]=0.

it follows directly that Q=0. For example, ;=0 if A

=M3. B=N2. and C=03.

This result provides a concise proof that Pauli’s replace-
ment (S) is valid whenever the dynamics is constrained to the
constant energy manifold (cf., (18] for a lengthier proof).

APPENDIX B: AREA ELEMENT FOR SPHERICAL
BIFOCAL COORDINATES ‘

The spherical bifocal coordinates are given by the angles
u; and u, between a point (P) and two fixed foci (A, and
A,) on the unit sphere. Of course, these coordinates are
unique only on the half sphere.

Theorem. The area element in spherical bifocal coordi-
nates is

dul dllz

ds sinA

where A is the angle between the arcs joining a given point
on the sphere with the two foci:
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A=LA|PA2.

Proof. Here are two proofs of the theorem. One is short
and intuitive. The other one is longer but a bit more rigorous.

Short Proof. The length of the arc described by the point
P on the sphere for an infinitesimal change u;—u,+du,,
when u, is kept fixed, is ds,. Basic spherical triangle geom-
etry provides

d duz
S1==
1 sinA
and a similar relation
f- _‘_1 . dul
59 = ——
27 5inA

for the infinitesimal arc ds,. The elementary surface area is
given by the cross product of the two arcs ds, X ds,. Since
the angle between these arcs is, in the first order of approxi-
mations, again A, then

dS= d u, d Uy
" sinA
as advertised.
Direct Proof. A direct proof calculates by brute force the
area element using

(B1)

9P 9P dud
u, . du,| 144
The length of the calculation depends, of course, on the par-
ticular coordinate frames of choice. For example, one can
choose A, and A, in the equatorial xOy plane, with A, on
the Ox axis. Let D be a point on the arc A;A, such that the
arc PD is perpendicular to A;A, (like a meridian passing
through P). The coordinates of the point P are then

P:=(cos fcosd, cos 8sin @, sin ),
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where = £ PD and ¢=2A,;D. Applying again spherical
trigonometry to the spherical triangles A,PD and A,PD.
then

P:=(cosu,.vcos" L PD—cos” u,. sinZ PD),

where

sinZPD=sinu, sinuysinA/sinl. . -

where, by definition, u;,=Z2A;,P, A=LA:PA,, and T
=L AA;. The goal is to express all courdinates of P in
terms of u, and u, and to do the corresponding derivatives in
Eq. (B1). Spherical trignometry yields

S?=sin? u, sin® u, sin® A
=[cos(u, —us)—cos [J[cos ' —cos(u;+u,)].

On defining

1
S==Sin '2' [r:(“l+u2)']v

1
S asin 5 [T=(u~u)].

the angle A is then determined from

S _,V¥5.5.3.3.

sinu, sinu, sinu, sinu;

sinA=

and the coordinates of P are now

S+3+_S_g_ VS+S-S’¢.§-
P:=jcosu,, - 2 - .
sin[l sinl’
Then Eq. (B1) finally reduces to ‘
: _ sinu sinu, _du, auy
dS—[ S ]d“]duz— sind N

which proves directly the above theorem for spherical bifo-
cal coordinates.
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